borgware-2d/src/can/can.c

516 lines
12 KiB
C

#ifndef __C64__
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#define asm asm volatile
#endif
#include "can.h"
#include "spi.h"
#define spi_clear_ss() SPI_PORT |= (1<<SPI_PIN_SS)
#define spi_set_ss() SPI_PORT &= ~(1<<SPI_PIN_SS)
//Registers
#define RXF0SIDH 0x00
#define RXF0SIDL 0x01
#define RXF0EID8 0x02
#define RXF0EID0 0x03
#define RXF1SIDH 0x04
#define RXF1SIDL 0x05
#define RXF1EID8 0x06
#define RXF1EID0 0x07
#define RXF2SIDH 0x08
#define RXF2SIDL 0x09
#define RXF2EID8 0x0A
#define RXF2EID0 0x0B
#define BFPCTRL 0x0C
#define TXRTSCTRL 0x0D
#define CANSTAT 0x0E
#define CANCTRL 0x0F
#define RXF3SIDH 0x10
#define RXF3SIDL 0x11
#define RXF3EID8 0x12
#define RXF3EID0 0x13
#define RXF4SIDH 0x14
#define RXF4SIDL 0x15
#define RXF4EID8 0x16
#define RXF4EID0 0x17
#define RXF5SIDH 0x18
#define RXF5SIDL 0x19
#define RXF5EID8 0x1A
#define RXF5EID0 0x1B
#define TEC 0x1C
#define REC 0x1D
#define RXM0SIDH 0x20
#define RXM0SIDL 0x21
#define RXM0EID8 0x22
#define RXM0EID0 0x23
#define RXM1SIDH 0x24
#define RXM1SIDL 0x25
#define RXM1EID8 0x26
#define RXM1EID0 0x27
#define CNF3 0x28
#define CNF2 0x29
#define CNF1 0x2A
#define CANINTE 0x2B
#define MERRE 7
#define WAKIE 6
#define ERRIE 5
#define TX2IE 4
#define TX1IE 3
#define TX0IE 2
#define RX1IE 1
#define RX0IE 0
#define CANINTF 0x2C
#define MERRF 7
#define WAKIF 6
#define ERRIF 5
#define TX2IF 4
#define TX1IF 3
#define TX0IF 2
#define RX1IF 1
#define RX0IF 0
#define EFLG 0x2D
#define TXB0CTRL 0x30
#define TXREQ 3
#define TXB0SIDH 0x31
#define TXB0SIDL 0x32
#define EXIDE 3
#define TXB0EID8 0x33
#define TXB0EID0 0x34
#define TXB0DLC 0x35
#define TXB0D0 0x36
#define RXB0CTRL 0x60
#define RXM1 6
#define RXM0 5
#define RXRTR 3
// Bits 2:0 FILHIT2:0
#define RXB0SIDH 0x61
#define RXB0SIDL 0x62
#define RXB0EID8 0x63
#define RXB0EID0 0x64
#define RXB0DLC 0x65
#define RXB0D0 0x66
//Command Bytes
#define RESET 0xC0
#define READ 0x03
#define READ_RX_BUFFER 0x90
#define WRITE 0x02
#define LOAD_TX_BUFFER 0x40
#define RTS 0x80
#define READ_STATUS 0xA0
#define RX_STATUS 0xB0
#define BIT_MODIFY 0x05
typedef struct{
can_message msg;
volatile unsigned char flags;
}can_message_x;
/* MCP */
void mcp_reset();
void mcp_write(unsigned char reg, unsigned char data);
//void mcp_write_b(unsigned char reg, unsigned char *buf, unsigned char len);
unsigned char mcp_read(unsigned char reg);
//void mcp_read_b(unsigned char reg, unsigned char *buf, unsigned char len);
void mcp_bitmod(unsigned char reg, unsigned char mask, unsigned char val);
unsigned char mcp_status();
//unsigned char mcp_rx_status();
#ifdef __AVR__
// Functions
/*
unsigned char mcp_rx_status() {
unsigned char d;
spi_set_ss();
spi_data(RX_STATUS);
d = spi_data(0);
spi_clear_ss();
return d;
}
*/
unsigned char mcp_status() {
unsigned char d;
spi_set_ss();
spi_data(READ_STATUS);
d = spi_data(0);
spi_clear_ss();
return d;
}
void mcp_bitmod(unsigned char reg, unsigned char mask, unsigned char val) {
spi_set_ss();
spi_data(BIT_MODIFY);
spi_data(reg);
spi_data(mask);
spi_data(val);
spi_clear_ss();
}
//load a message to mcp2515 and start transmission
void message_load(can_message_x * msg) {
unsigned char x;
spi_set_ss();
spi_data(WRITE);
spi_data(TXB0SIDH);
spi_data(((unsigned char)(msg->msg.port_src << 2)) |
(msg->msg.port_dst >> 4));
spi_data((unsigned char)((msg->msg.port_dst & 0x0C) << 3) |
(1<<EXIDE) | (msg->msg.port_dst & 0x03));
spi_data(msg->msg.addr_src);
spi_data(msg->msg.addr_dst);
spi_data(msg->msg.dlc);
for(x=0;x<msg->msg.dlc;x++) {
spi_data(msg->msg.data[x]);
}
spi_clear_ss();
spi_set_ss();
spi_data(WRITE);
spi_data(TXB0CTRL);
spi_data((1<<TXREQ));
spi_clear_ss();
}
//get a message from mcp2515 and disable RX interrupt Condition
void message_fetch(can_message_x * msg) {
unsigned char tmp1, tmp2, tmp3;
unsigned char x;
spi_set_ss();
spi_data(READ);
spi_data(RXB0SIDH);
tmp1 = spi_data(0);
msg->msg.port_src = tmp1 >> 2;
tmp2 = spi_data(0);
tmp3 = (unsigned char)((unsigned char)(tmp2 >> 3) & 0x0C);
msg->msg.port_dst = ((unsigned char)(tmp1 <<4 ) & 0x30) | tmp3 |
(unsigned char)(tmp2 & 0x03);
msg->msg.addr_src = spi_data(0);
msg->msg.addr_dst = spi_data(0);
msg->msg.dlc = spi_data(0) & 0x0F;
for(x=0;x<msg->msg.dlc;x++) {
msg->msg.data[x] = spi_data(0);
}
spi_clear_ss();
mcp_bitmod(CANINTF, (1<<RX0IF), 0x00);
}
#ifdef CAN_INTERRUPT
static can_message_x RX_BUFFER[CAN_RX_BUFFER_SIZE],
TX_BUFFER[CAN_TX_BUFFER_SIZE];
unsigned char RX_HEAD=0;volatile unsigned char RX_TAIL=0;
unsigned char TX_HEAD= 0;volatile unsigned char TX_TAIL=0;
static volatile unsigned char TX_INT;
ISR(INT0_vect) {
unsigned char status = mcp_status();
if ( status & 0x01 ) { // Message in RX0
if ( !(((can_message_x*)&RX_BUFFER[RX_HEAD])->flags & 0x01) ) {
message_fetch(&RX_BUFFER[RX_HEAD]);
RX_BUFFER[RX_HEAD].flags |= 0x01;//mark buffer as used
if( ++RX_HEAD == CAN_RX_BUFFER_SIZE) RX_HEAD = 0;
}else{
//buffer overflow
//just clear the Interrupt condition, and lose the message
mcp_bitmod(CANINTF, (1<<RX0IF), 0x00);
}
} else if ( status & 0x08 ) { // TX1 empty
if(((can_message_x*)&TX_BUFFER[TX_TAIL])->flags & 0x01) {
((can_message_x*)&TX_BUFFER[TX_TAIL])->flags &= ~0x01;
TX_INT = 1;
message_load(&TX_BUFFER[TX_TAIL]);
if(++TX_TAIL == CAN_TX_BUFFER_SIZE) TX_TAIL = 0;
}else{
TX_INT = 0;
}
mcp_bitmod(CANINTF, (1<<TX0IF), 0x00);
} else {
#ifdef CAN_HANDLEERROR
status = mcp_read(EFLG);
if(status) { // we've got a error condition
can_error = status;
mcp_write(EFLG, 0);
}
#endif // CAN_HANDLEERROR
}
}
#endif
void mcp_reset() {
spi_set_ss();
spi_data(RESET);
spi_clear_ss();
}
void mcp_write(unsigned char reg, unsigned char data) {
spi_set_ss();
spi_data(WRITE);
spi_data(reg);
spi_data(data);
spi_clear_ss();
}
/*
void mcp_write_b(unsigned char reg, unsigned char *buf, unsigned char len) {
unsigned char x;
spi_set_ss();
spi_data(WRITE);
spi_data(reg);
for(x=0;x<len;x++) {
spi_data(buf[x]);
}
spi_clear_ss();
}
*/
unsigned char mcp_read(unsigned char reg) {
unsigned char d;
spi_set_ss();
spi_data(READ);
spi_data(reg);
d = spi_data(0);
spi_clear_ss();
return d;
}
/*
void mcp_read_b(unsigned char reg, unsigned char *buf, unsigned char len) {
unsigned char x;
spi_set_ss();
spi_data(READ);
spi_data(reg);
for(x=0;x<len;x++) {
buf[x] = spi_data(0);
}
spi_clear_ss();
}
*/
/* Management */
void can_setmode(can_mode_t mode) {
unsigned char val = mode << 5;
val |= 0x04; // CLKEN
mcp_write( CANCTRL, val );
}
void can_setfilter() {
//RXM1 RXM0
// 0 0 receive matching filter
// 0 1 " only 11bit Identifier
// 1 0 " only 29bit Identifier
// 1 1 any
mcp_write(RXB0CTRL, (1<<RXM1) | (1<<RXM0));
}
void can_setled(unsigned char led, unsigned char state) {
mcp_bitmod(BFPCTRL, 0x10<<led, state?0xff:0);
}
/*******************************************************************/
void delayloop(){
unsigned char x;
for(x=0;x<255;x++){
asm ("nop");
}
}
void can_init(){
//set Slave select high
SPI_PORT |= (1<<SPI_PIN_SS);
#ifdef CAN_INTERRUPT
unsigned char x;
for(x=0;x<CAN_RX_BUFFER_SIZE;x++){
RX_BUFFER[x].flags = 0;
}
for(x=0;x<CAN_TX_BUFFER_SIZE;x++){
TX_BUFFER[x].flags = 0;
}
#endif
#ifdef CAN_HANDLEERROR
can_error = 0;
#endif
mcp_reset();
delayloop();
mcp_write(BFPCTRL,0x0C);//RXBF Pins to Output
// 0x01 : 125kbit/8MHz
// 0x03 : 125kbit/16MHz
// 0x04 : 125kbit/20MHz
#if FREQ == 16000000
#define CNF1_T 0x03
#elif FREQ == 8000000
#define CNF1_T 0x01
#elif FREQ == 20000000
#define CNF1_T 0x04
#else
#error Can Baudrate is only defined for 8, 16 and 20 MHz
#endif
mcp_write( CNF1, 0x40 | CNF1_T );
mcp_write( CNF2, 0xf1 );
mcp_write( CNF3, 0x05 );
// configure IRQ: this only configures the INT Output of the mcp2515, not
// the int on the Atmel
mcp_write( CANINTE, (1<<RX0IE) | (1<<TX0IE) );
can_setfilter();
can_setmode(normal);
#ifdef CAN_INTERRUPT
// configure IRQ: this only configures the INT Output of the mcp2515,
// not the int on the Atmel
mcp_write( CANINTE, (1<<RX0IE) | (1<<TX0IE) );
#ifdef __C64__
#error not implemented yet
#elif ATMEGA
//this turns on INT0 on the Atmega
GICR |= (1<<INT0);
#else
//this turns on INT0 on the Atmel
MCUCR |= (1<<ISC01);
GIMSK |= (1<<INT0);
#endif //ATMEGA
#else //CAN_INTERRUPT
// configure IRQ: this only configures the INT Output of the mcp2515,
// not the int on the Atmel
mcp_write( CANINTE, (1<<RX0IE) ); //only turn RX int on
#endif //CAN_INTERRUPT
}
#ifdef CAN_INTERRUPT
//returns next can message in buffer, or 0 Pointer if buffer is empty
can_message * can_get_nb() {
can_message_x *p;
if(RX_HEAD == RX_TAIL) {
return 0;
} else {
p = &RX_BUFFER[RX_TAIL];
if(++RX_TAIL == CAN_RX_BUFFER_SIZE) RX_TAIL = 0;
return &(p->msg);
}
}
can_message * can_get() {
can_message_x *p;
while(RX_HEAD == RX_TAIL) {};
p = &RX_BUFFER[RX_TAIL];
if(++RX_TAIL == CAN_RX_BUFFER_SIZE) RX_TAIL = 0;
return &(p->msg);
}
//marks a receive buffer as unused again so it can be overwritten in Interrupt
void can_free(can_message * msg) {
can_message_x * msg_x = (can_message_x *) msg;
msg_x->flags = 0;
}
//returns pointer to the next can TX buffer
can_message * can_buffer_get() {
can_message_x *p;
p = &TX_BUFFER[TX_HEAD];
while (p->flags&0x01); //wait until buffer is free
if(++TX_HEAD == CAN_TX_BUFFER_SIZE) TX_HEAD = 0;
return &(p->msg);
}
//start transmitting can messages, and mark message msg as transmittable
void can_transmit(can_message* msg2) {
can_message_x* msg=(can_message_x*) msg2;
if(msg) {
msg->flags |= 0x01;
}
if(!TX_INT) {
if(((can_message_x*)&TX_BUFFER[TX_TAIL])->flags & 0x01) {
((can_message_x*)&TX_BUFFER[TX_TAIL])->flags &= ~0x01;
TX_INT = 1;
message_load(&TX_BUFFER[TX_TAIL]);
if(++TX_TAIL == CAN_TX_BUFFER_SIZE) TX_TAIL = 0;
}
}
}
#else // NON INTERRUPT VERSION
can_message_x RX_MESSAGE, TX_MESSAGE;
can_message * can_get_nb() {
//check the pin, that the MCP's interrupt output connects to
if(SPI_REG_PIN_MCP_INT & (1<<SPI_PIN_MCP_INT)) {
return 0;
} else {
//So the MCP Generates an RX Interrupt
message_fetch(&RX_MESSAGE);
return &(RX_MESSAGE.msg);
}
}
can_message * can_get() {
//wait while the MCP doesn't generate an RX Interrupt
while(SPI_REG_PIN_MCP_INT & (1<<SPI_PIN_MCP_INT)) {};
message_fetch(&RX_MESSAGE);
return &(RX_MESSAGE.msg);
}
//only for compatibility with Interrupt driven Version
can_message * can_buffer_get() {
return &(TX_MESSAGE.msg);
}
void can_transmit(can_message * msg) {
message_load((can_message_x*)msg);
}
void can_free(can_message * msg) {
}
#endif /* CAN_INTERRUPT */
#else /* ifdef __AVR__ */
/* stubs for simulator */
static can_message null_msg = {0};
unsigned char mcp_status() {return 0;}
void mcp_bitmod(unsigned char reg, unsigned char mask, unsigned char val){}
void message_load(can_message_x * msg){}
void message_fetch(can_message_x * msg){}
void mcp_reset(){}
void mcp_write(unsigned char reg, unsigned char data){}
unsigned char mcp_read(unsigned char reg){return 0;}
void can_setmode(can_mode_t mode) {}
void can_setfilter() {}
void can_setled(unsigned char led, unsigned char state){}
void delayloop(){}
void can_init(){}
can_message * can_get_nb(){return &null_msg;}
can_message * can_get(){return &null_msg;}
can_message * can_buffer_get(){return &null_msg;}
void can_transmit(can_message * msg){}
void can_free(can_message * msg){}
#endif