2011-12-15 04:43:40 +00:00
|
|
|
#include <stdint.h>
|
|
|
|
#include "../config.h"
|
|
|
|
#include "../pixel.h"
|
|
|
|
#include "../util.h"
|
|
|
|
#include "../compat/pgmspace.h"
|
|
|
|
#include "blackhole.h"
|
|
|
|
|
|
|
|
// macro for simplifying flash memory access
|
|
|
|
#define PGM(x) pgm_read_byte(&(x))
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Integer variant of the sinus function which takes an integer based angle
|
|
|
|
* (range from 0 to 63) where sin_i(64) corresponds to sin(2 * M_PI) * 64 and
|
|
|
|
* sin_i(16) corresponds to sin(0.5 * M_PI) * 64 (each excluding the fractional
|
|
|
|
* part). It uses a lookup table which models one quarter of a full sinus period
|
|
|
|
* and calculates the rest of the function from that quarter.
|
|
|
|
* @param angle angle based on an integer (range from 0 to 63)
|
|
|
|
* @return result of the sinus function normalized to a range from -64 to 64
|
|
|
|
*/
|
|
|
|
static signed char sin_i(unsigned char angle) {
|
|
|
|
// the aforementioned lookup table
|
|
|
|
static signed char const sinus_table[] PROGMEM =
|
|
|
|
{0, 6, 12, 19, 24, 30, 36, 41, 45, 49, 53, 56, 59, 61, 63, 64};
|
|
|
|
|
|
|
|
// determine correct index for the lookup table depending on the given angle
|
|
|
|
angle %= 64u;
|
|
|
|
unsigned char index;
|
|
|
|
if (angle < 16) {
|
|
|
|
index = angle;
|
|
|
|
} else if (angle < 32) {
|
2011-12-16 19:40:25 +00:00
|
|
|
index = 31 - angle;
|
2011-12-15 04:43:40 +00:00
|
|
|
} else if (angle < 48) {
|
|
|
|
index = angle - 32;
|
|
|
|
} else {
|
2011-12-16 19:40:25 +00:00
|
|
|
index = 63 - angle;
|
2011-12-15 04:43:40 +00:00
|
|
|
}
|
|
|
|
|
2011-12-16 19:40:25 +00:00
|
|
|
return (signed char)(PGM(sinus_table[index])) * (angle < 32 ? 1 : -1);
|
2011-12-15 04:43:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Integer variant of the cosinus function which takes an integer based angle
|
|
|
|
* (range from 0 to 63) where cos_i(64) corresponds to cos(2 * M_PI) * 64 and
|
|
|
|
* cos_i(16) corresponds to cos(0.5 * M_PI) * 64. It uses the sin_i function and
|
|
|
|
* shifts the given angle by 16 (which corresponds to 90 degrees).
|
|
|
|
* @param angle angle based on an integer (range from 0 to 63)
|
|
|
|
* @return result of the cosinus function normalized to a range from -64 to 64
|
|
|
|
*/
|
|
|
|
static signed char cos_i(unsigned char const angle) {
|
|
|
|
return sin_i(angle + 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define NUM_CIRCLE 7
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Draws a black hole like pattern (viewed from different perspectives).
|
|
|
|
*/
|
|
|
|
void blackhole(void) {
|
|
|
|
pixel circlePoints[NUM_CIRCLE][8];
|
|
|
|
unsigned char add = 0;
|
|
|
|
signed char firstRadius = 80, helpRadius, angle = 0, x, y;
|
|
|
|
// initialize data
|
|
|
|
for (int k = 0; k < 800; k++) {
|
|
|
|
if (k > 300)
|
|
|
|
add = k / 16;
|
|
|
|
helpRadius = firstRadius;
|
|
|
|
for (unsigned char i = 0; i < NUM_CIRCLE; i++) {
|
|
|
|
for (unsigned char j = 0; j < 8; j++) {
|
|
|
|
if (j & 1) {
|
|
|
|
circlePoints[i][j].x = 64
|
|
|
|
+ (cos_i(angle + j * 8) * helpRadius) / 64;
|
|
|
|
circlePoints[i][j].y = 64
|
|
|
|
+ (sin_i(angle + add + j * 8) * helpRadius) / 64;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
circlePoints[i][j].x = 64 +
|
|
|
|
(cos_i(angle + j * 8 + 4) * helpRadius) / 64;
|
|
|
|
circlePoints[i][j].y = 64 +
|
|
|
|
(sin_i(angle + add + j * 8 + 4) * helpRadius) / 64;
|
|
|
|
}
|
|
|
|
x = circlePoints[i][j].x / 8;
|
|
|
|
y = circlePoints[i][j].y / 8;
|
|
|
|
if (x < 16 && y < 16)
|
|
|
|
setpixel((pixel){x, y}, 3);
|
|
|
|
}
|
|
|
|
helpRadius = (helpRadius * 2) / 3;
|
|
|
|
}
|
|
|
|
wait(30);
|
|
|
|
clear_screen(0);
|
|
|
|
angle++;
|
|
|
|
firstRadius += 2;
|
|
|
|
if (firstRadius > 119)
|
|
|
|
firstRadius = 80;
|
|
|
|
}
|
|
|
|
}
|