gnuboy-for-dfi/hw.c

193 lines
3.5 KiB
C

#include "defs.h"
#include "cpu.h"
#include "hw.h"
#include "regs.h"
#include "lcd.h"
#include "mem.h"
#include "fastmem.h"
struct hw hw;
/*
* hw_interrupt changes the virtual interrupt lines included in the
* specified mask to the values the corresponding bits in i take, and
* in doing so, raises the appropriate bit of R_IF for any interrupt
* lines that transition from low to high.
*/
void hw_interrupt(byte i, byte mask)
{
byte oldif = R_IF;
i &= 0x1F & mask;
R_IF |= i & (hw.ilines ^ i);
/* FIXME - is this correct? not sure the docs understand... */
if ((R_IF & (R_IF ^ oldif) & R_IE) && cpu.ime) cpu.halt = 0;
/* if ((i & (hw.ilines ^ i) & R_IE) && cpu.ime) cpu.halt = 0; */
/* if ((i & R_IE) && cpu.ime) cpu.halt = 0; */
hw.ilines &= ~mask;
hw.ilines |= i;
}
/*
* hw_dma performs plain old memory-to-oam dma, the original dmg
* dma. Although on the hardware it takes a good deal of time, the cpu
* continues running during this mode of dma, so no special tricks to
* stall the cpu are necessary.
*/
void hw_dma(byte b)
{
int i;
addr a;
a = ((addr)b) << 8;
for (i = 0; i < 160; i++, a++)
lcd.oam.mem[i] = readb(a);
}
/* COMMENT A:
* Beware was pretty sure that this HDMA implementation was incorrect, as when
* he used it in bgb, it broke Pokemon Crystal (J). I tested it with this and
* it seems to work fine, so until I find any problems with it, it's staying.
* (Lord Nightmare)
*/
void hw_hdma()
{
int cnt;
addr sa;
int da;
sa = ((addr)R_HDMA1 << 8) | (R_HDMA2&0xf0);
da = 0x8000 | ((int)(R_HDMA3&0x1f) << 8) | (R_HDMA4&0xf0);
cnt = 16;
while (cnt--)
writeb(da++, readb(sa++));
cpu_timers(16); /* SEE COMMENT A ABOVE */
R_HDMA1 = sa >> 8;
R_HDMA2 = sa & 0xF0;
R_HDMA3 = 0x1F & (da >> 8);
R_HDMA4 = da & 0xF0;
R_HDMA5--;
hw.hdma--;
}
void hw_hdma_cmd(byte c)
{
int cnt;
addr sa;
int da;
/* Begin or cancel HDMA */
if ((hw.hdma|c) & 0x80)
{
hw.hdma = c;
R_HDMA5 = c & 0x7f;
if ((R_STAT&0x03) == 0x00) hw_hdma(); /* SEE COMMENT A ABOVE */
return;
}
/* Perform GDMA */
sa = ((addr)R_HDMA1 << 8) | (R_HDMA2&0xf0);
da = 0x8000 | ((int)(R_HDMA3&0x1f) << 8) | (R_HDMA4&0xf0);
cnt = ((int)c)+1;
/* FIXME - this should use cpu time! */
/*cpu_timers(102 * cnt);*/
cpu_timers((460>>cpu.speed)+cnt*16); /*dalias*/
/*cpu_timers(228 + (16*cnt));*/ /* this should be right according to no$ */
cnt <<= 4;
while (cnt--)
writeb(da++, readb(sa++));
R_HDMA1 = sa >> 8;
R_HDMA2 = sa & 0xF0;
R_HDMA3 = 0x1F & (da >> 8);
R_HDMA4 = da & 0xF0;
R_HDMA5 = 0xFF;
}
/*
* pad_refresh updates the P1 register from the pad states, generating
* the appropriate interrupts (by quickly raising and lowering the
* interrupt line) if a transition has been made.
*/
void pad_refresh()
{
byte oldp1;
oldp1 = R_P1;
R_P1 &= 0x30;
R_P1 |= 0xc0;
if (!(R_P1 & 0x10))
R_P1 |= (hw.pad & 0x0F);
if (!(R_P1 & 0x20))
R_P1 |= (hw.pad >> 4);
R_P1 ^= 0x0F;
if (oldp1 & ~R_P1 & 0x0F)
{
hw_interrupt(IF_PAD, IF_PAD);
hw_interrupt(0, IF_PAD);
}
}
/*
* These simple functions just update the state of a button on the
* pad.
*/
void pad_press(byte k)
{
if (hw.pad & k)
return;
hw.pad |= k;
pad_refresh();
}
void pad_release(byte k)
{
if (!(hw.pad & k))
return;
hw.pad &= ~k;
pad_refresh();
}
void pad_set(byte k, int st)
{
st ? pad_press(k) : pad_release(k);
}
void hw_reset()
{
hw.ilines = hw.pad = 0;
memset(ram.hi, 0, sizeof ram.hi);
R_P1 = 0xFF;
R_LCDC = 0x91;
R_BGP = 0xFC;
R_OBP0 = 0xFF;
R_OBP1 = 0xFF;
R_SVBK = 0x01;
R_HDMA5 = 0xFF;
R_VBK = 0xFE;
}