Simplified example to use less calls.

Defaults now to 32-byte payloads, but you can call in with any size under that.  Added example to docs.
This commit is contained in:
james 2011-03-31 21:32:45 -07:00
parent 0dc43ab872
commit e97e0239d7
7 changed files with 376 additions and 77 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
*.o
.*.swp
docs/

View File

@ -631,7 +631,7 @@ EXCLUDE_SYMBOLS =
# directories that contain example code fragments that are included (see
# the \include command).
EXAMPLE_PATH =
EXAMPLE_PATH = examples
# If the value of the EXAMPLE_PATH tag contains directories, you can use the
# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp
@ -645,7 +645,7 @@ EXAMPLE_PATTERNS =
# commands irrespective of the value of the RECURSIVE tag.
# Possible values are YES and NO. If left blank NO is used.
EXAMPLE_RECURSIVE = NO
EXAMPLE_RECURSIVE = YES
# The IMAGE_PATH tag can be used to specify one or more files or
# directories that contain image that are included in the documentation (see
@ -1548,4 +1548,4 @@ GENERATE_LEGEND = YES
# remove the intermediate dot files that are used to generate
# the various graphs.
DOT_CLEANUP = YES
DOT_CLEANUP = YES

View File

@ -80,7 +80,7 @@ uint8_t RF24::write_register(uint8_t reg, uint8_t value)
/******************************************************************/
uint8_t RF24::write_payload(const void* buf)
uint8_t RF24::write_payload(const void* buf, uint8_t len)
{
uint8_t status;
@ -88,9 +88,12 @@ uint8_t RF24::write_payload(const void* buf)
csn(LOW);
status = SPI.transfer( W_TX_PAYLOAD );
uint8_t len = payload_size;
while ( len-- )
uint8_t data_len = min(len,payload_size);
uint8_t blank_len = payload_size - data_len;
while ( data_len-- )
SPI.transfer(*current++);
while ( blank_len-- )
SPI.transfer(0);
csn(HIGH);
@ -99,16 +102,19 @@ uint8_t RF24::write_payload(const void* buf)
/******************************************************************/
uint8_t RF24::read_payload(void* buf)
uint8_t RF24::read_payload(void* buf, uint8_t len)
{
uint8_t status;
uint8_t* current = (uint8_t*)buf;
csn(LOW);
status = SPI.transfer( R_RX_PAYLOAD );
uint8_t len = payload_size;
while ( len-- )
uint8_t data_len = min(len,payload_size);
uint8_t blank_len = payload_size - data_len;
while ( data_len-- )
*current++ = SPI.transfer(0xff);
while ( blank_len-- )
SPI.transfer(0xff);
csn(HIGH);
return status;
@ -181,7 +187,7 @@ void RF24::print_observe_tx(uint8_t value)
/******************************************************************/
RF24::RF24(int _cepin, int _cspin):
ce_pin(_cepin), csn_pin(_cspin)
ce_pin(_cepin), csn_pin(_cspin), payload_size(32)
{
}
@ -197,7 +203,6 @@ void RF24::setChannel(int channel)
void RF24::setPayloadSize(uint8_t size)
{
payload_size = min(size,32);
write_register(RX_PW_P0,min(size,32));
}
/******************************************************************/
@ -300,7 +305,7 @@ void RF24::stopListening(void)
/******************************************************************/
boolean RF24::write( const void* buf )
boolean RF24::write( const void* buf, uint8_t len )
{
boolean result = false;
@ -308,7 +313,7 @@ boolean RF24::write( const void* buf )
write_register(CONFIG, _BV(EN_CRC) | _BV(PWR_UP));
// Send the payload
write_payload( buf );
write_payload( buf, len );
// Allons!
ce(HIGH);
@ -366,13 +371,13 @@ boolean RF24::available(void)
/******************************************************************/
boolean RF24::read( void* buf )
boolean RF24::read( void* buf, uint8_t len )
{
// was this the last of the data available?
boolean result = false;
// Fetch the payload
read_payload( buf );
read_payload( buf, len );
uint8_t fifo_status;
read_register(FIFO_STATUS,&fifo_status,1);
@ -391,6 +396,7 @@ void RF24::openWritingPipe(uint64_t value)
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
write_register(RX_PW_P0,min(payload_size,32));
}
/******************************************************************/

47
RF24.h
View File

@ -14,16 +14,20 @@
/**
* Driver for nRF24L01 2.4GHz Wireless Transceiver
*
* See <a href="http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01_Product_Specification_v2_0.pdf">Datasheet</a>
* Please refer to:
*
* @li <a href="http://maniacbug.github.com/RF24/classRF24.html">Detailed Documentation</a>
* @li <a href="https://github.com/maniacbug/RF24/">Source Code</a>
* @li <a href="http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01_Product_Specification_v2_0.pdf">Chip Datasheet</a>
*
* This chip uses the SPI bus, plus two chip control pins. Remember that pin 10 must still remain an output, or
* the SPI hardware will go into 'slave' mode.
*
* Design Goals: This library is designed to be...
* * Maximally compliant with the intended operation of the chip
* * Easy for beginners to use
* * Consumed with a public interface that's similiar to other Arduino standard libraries
* * Built against the standard SPI library.
* @li Maximally compliant with the intended operation of the chip
* @li Easy for beginners to use
* @li Consumed with a public interface that's similiar to other Arduino standard libraries
* @li Built against the standard SPI library.
*/
class RF24
@ -91,9 +95,10 @@ protected:
* The size of data written is the fixed payload size, see getPayloadSize()
*
* @param buf Where to get the data
* @param len Number of bytes to be sent
* @return Current value of status register
*/
uint8_t write_payload(const void* buf);
uint8_t write_payload(const void* buf, uint8_t len);
/**
* Read the receive payload
@ -101,9 +106,10 @@ protected:
* The size of data read is the fixed payload size, see getPayloadSize()
*
* @param buf Where to put the data
* @param len Maximum number of bytes to read
* @return Current value of status register
*/
uint8_t read_payload(void* buf) ;
uint8_t read_payload(void* buf, uint8_t len) ;
/**
* Empty the receive buffer
@ -222,12 +228,15 @@ public:
* the receiver or the timeout/retransmit maxima are reached. In
* the current configuration, the max delay here is 60ms.
*
* The size of data written is the fixed payload size, see getPayloadSize()
* The maximum size of data written is the fixed payload size, see
* getPayloadSize(). However, you can write less, and the remainder
* will just be filled with zeroes.
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @return True if the payload was delivered successfully false if not
*/
boolean write( const void* buf );
boolean write( const void* buf, uint8_t len );
/**
* Test whether there are bytes available to be read
@ -249,9 +258,10 @@ public:
* for beginners to use. No casting needed.
*
* @param buf Pointer to a buffer where the data should be written
* @param len Maximum number of bytes to read into the buffer
* @return True if the payload was delivered successfully false if not
*/
boolean read( void* buf ) ;
boolean read( void* buf, uint8_t len ) ;
/**
* Open a pipe for writing
@ -296,6 +306,21 @@ public:
*/
void openReadingPipe(uint8_t number, uint64_t address);
};
};
/**
* @example pingpair.pde
*
* This is an example of how to use the RF24 class. Write this sketch to two different nodes,
* connect the role_pin to ground on one. The ping node sends the current time to the pong node,
* which responds by sending the value back.
*/
/**
* @mainpage Driver Library for nRF24L01
*
* See the RF24 class for details on how to drive this chip.
*/
#endif // __RF24_H__

1
examples/pingpair/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
output/

277
examples/pingpair/makefile Normal file
View File

@ -0,0 +1,277 @@
# Arduino Makefile
# Arduino adaptation by mellis, eighthave, oli.keller
# Modified by Kerry Wong to support NetBeans
# Modified by Rob Gray (Graynomad) for use with Windows and no IDE
# This works in my environment and I use it to program two different
# 328-based boards and a Mega2560. It's not necessarily robust and
# I may have broken something in the original file that I don't use.
#
# This makefile allows you to build sketches from the command line
# without the Arduino environment.
#
# Instructions for using the makefile:
#
# 1. Copy this file into the folder with your sketch. The project code file
# should have a .c extension however the file gets copied to a .cpp before
# compilation so you still write in C++.
#
# 2. Modify the lines between the double ### rows to set the paths
# comm ports etc for your system. EG. c:/progra~1/arduino/arduino-00
# for the Arduino IDE, Note the use of short folder name, don't use
# "Program files" because spaces will break the build.
#
# Set the line containing "MCU" to match your board's processor.
# Typically ATmega328 or ATmega2560. If you're using a LilyPad Arduino,
# change F_CPU to 8000000.
#
# 3. At the command line, change to the directory containing your
# program's file and the makefile.
#
# 4. Type "make" and press enter to compile/verify your program.
# The default make target will also perform the uplode using avrdude.
#
# The first time this is done all required libraries will be built
# and a core.a file will be created in the output folder.
#
# NOTES:
# All output goes into a folder called "output" underneath the working folder.
# The default all: target creates symbol (.sym) and expanded assembly
# (.lss) files and uploads the program.
#
#
##########################################################
##########################################################
# Select processor here
MCU = atmega328p
#MCU = atmega2560
ifeq ($(MCU),atmega2560)
UPLOAD_RATE = 115200
AVRDUDE_PROTOCOL = stk500v2
COM = 39
endif
ifeq ($(MCU),atmega328p)
UPLOAD_RATE = 57600
AVRDUDE_PROTOCOL = stk500v1
COM = 33
endif
ARDUINO_VERSION = 22
PROJECT_NAME = $(notdir $(PWD))
PROJECT_DIR = .
ARDUINO_DIR = /opt/arduino-00$(ARDUINO_VERSION)
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino
ARDUINO_AVR = $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr
ARDUINO_LIB = $(ARDUINO_DIR)/libraries
AVR_TOOLS_PATH = /usr/bin
AVRDUDECONFIG_PATH = $(ARDUINO_DIR)/hardware/tools
PORT = /dev/ttyUSB0
PORT2 = /dev/ttyUSB1
F_CPU = 16000000
##########################################################
##########################################################
# Note that if your program has dependencies other than those
# already listed below, you will need to add them accordingly.
C_MODULES = \
$(ARDUINO_CORE)/wiring_pulse.c \
$(ARDUINO_CORE)/wiring_analog.c \
$(ARDUINO_CORE)/pins_arduino.c \
$(ARDUINO_CORE)/wiring.c \
$(ARDUINO_CORE)/wiring_digital.c \
$(ARDUINO_CORE)/WInterrupts.c \
$(ARDUINO_CORE)/wiring_shift.c \
CXX_MODULES = \
$(ARDUINO_CORE)/Tone.cpp \
$(ARDUINO_CORE)/main.cpp \
$(ARDUINO_CORE)/WMath.cpp \
$(ARDUINO_CORE)/Print.cpp \
$(ARDUINO_CORE)/HardwareSerial.cpp \
$(ARDUINO_LIB)/SPI/SPI.cpp \
../../RF24.cpp
CXX_APP = output/$(PROJECT_NAME).cpp
MODULES = $(C_MODULES) $(CXX_MODULES)
SRC = $(C_MODULES)
CXXSRC = $(CXX_MODULES) $(CXX_APP)
FORMAT = ihex
# Name of this Makefile (used for "make depend").
MAKEFILE = Makefile
# Debugging format.
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
#DEBUG = stabs
DEBUG =
OPT = s
# Place -D or -U options here
CDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
CXXDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
# Place -I options here
CINCS = -I$(ARDUINO_CORE) -I$(ARDUINO_LIB) -I$(PROJECT_DIR) -I$(ARDUINO_AVR) -I$(ARDUINO_LIB)/SPI -I../..
CXXINCS = -I$(ARDUINO_CORE) -I$(ARDUINO_LIB)
# Compiler flag to set the C Standard level.
# c89 - "ANSI" C
# gnu89 - c89 plus GCC extensions
# c99 - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
#CSTANDARD = -std=gnu99
CDEBUG = -g$(DEBUG)
#CWARN = -Wall -Wstrict-prototypes
#CWARN = -Wall # show all warnings
CWARN = -w # suppress all warnings
CMAP = -Wl,-Map,output.map
####CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CTUNING = -ffunction-sections -fdata-sections
CXXTUNING = -fno-exceptions -ffunction-sections -fdata-sections
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
MMCU = -mmcu=$(MCU)
CFLAGS = $(CDEBUG) -O$(OPT) $(CMAP) $(CWARN) $(CTUNING) $(MMCU) $(CDEFS) $(CINCS) $(CSTANDARD) $(CEXTRA)
CXXFLAGS = $(CDEBUG) -O$(OPT) $(CWARN) $(CXXTUNING) $(CDEFS) $(CINCS)
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
LDFLAGS = -O$(OPT) -lm -Wl,--gc-sections
#LDFLAGS = -O$(OPT) -lm -Wl,-Map,output/$(PROJECT_NAME).map
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:output/$(PROJECT_NAME).hex:i
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf \
-p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE)
# Program settings
CC = $(AVR_TOOLS_PATH)/avr-gcc
CXX = $(AVR_TOOLS_PATH)/avr-g++
LD = $(AVR_TOOLS_PATH)/avr-gcc
OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
AR = $(AVR_TOOLS_PATH)/avr-ar
SIZE = $(AVR_TOOLS_PATH)/avr-size
NM = $(AVR_TOOLS_PATH)/avr-nm
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude
REMOVE = rm -f
MV = mv -f
# Define all object files.
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
OBJ_MODULES = $(C_MODULES:.c=.o) $(CXX_MODULES:.cpp=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = $(CFLAGS) -mmcu=$(MCU)
ALL_CXXFLAGS = $(CXXFLAGS) -mmcu=$(MCU)
ALL_ASFLAGS = -x assembler-with-cpp $(ASFLAGS) -mmcu=$(MCU)
ALL_LDFLAGS = $(LDFLAGS) -mmcu=$(MCU)
# Default target.
# This is th etarget that gets executed with a make command
# that has no parameters, ie "make".
all: applet_files build sym lss size upload
build: elf hex
output/$(PROJECT_NAME).cpp: $(PROJECT_NAME).pde
test -d output || mkdir output
echo "#include <WProgram.h>" > $@
cat $< >> $@
elf: output/$(PROJECT_NAME).elf
hex: output/$(PROJECT_NAME).hex
eep: output/$(PROJECT_NAME).eep
lss: output/$(PROJECT_NAME).lss
#sym: output/$(PROJECT_NAME).sym
# Upload HEX file to Arduino
upload: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT) $(AVRDUDE_WRITE_FLASH)
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT2) $(AVRDUDE_WRITE_FLASH)
sym:
$(NM) -n -C --format=posix output/$(PROJECT_NAME).elf > output/$(PROJECT_NAME).sym
# Display size of file.
size:
$(SIZE) output/$(PROJECT_NAME).elf
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: output/$(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
extcoff: $(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-ext-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
.SUFFIXES: .elf .hex .eep .lss .sym
.elf.hex:
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
.elf.eep:
$(OBJCOPY) -O $(FORMAT) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--no-change-warnings \
--change-section-lma .eeprom=0 $< $@
# Create extended listing file from ELF output file.
.elf.lss:
$(OBJDUMP) -h -S $< > $@
# Link: create ELF output file from library.
#output/$(PROJECT_NAME).elf: $(PROJECT_NAME).c output/core.a
output/$(PROJECT_NAME).elf: output/$(PROJECT_NAME).o output/core.a
$(LD) $(ALL_LDFLAGS) -o $@ output/$(PROJECT_NAME).o output/core.a
output/core.a: $(OBJ_MODULES)
@for i in $(OBJ_MODULES); do echo $(AR) rcs output/core.a $$i; $(AR) rcs output/core.a $$i; done
# Compile: create object files from C++ source files.
.cpp.o:
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
# Compile: create object files from C source files.
.c.o:
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
.c.s:
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
.S.o:
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Automatic dependencies
%.d: %.c
$(CC) -M $(ALL_CFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
%.d: %.cpp
$(CXX) -M $(ALL_CXXFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
# Target: clean project.
clean:
$(REMOVE) output/$(PROJECT_NAME).hex output/$(PROJECT_NAME).eep output/$(PROJECT_NAME).cof output/$(PROJECT_NAME).elf \
output/$(PROJECT_NAME).map output/$(PROJECT_NAME).sym output/$(PROJECT_NAME).lss output/core.a \
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
#.PHONY: all build elf hex eep lss sym program coff extcoff clean applet_files sizebefore sizeafter
.PHONY: all build elf hex eep lss sym program coff extcoff applet_files sizebefore sizeafter
#include $(SRC:.c=.d)
#include $(CXXSRC:.cpp=.d)

View File

@ -29,13 +29,9 @@
RF24 radio(8,9);
// sets the address (and therefore the role of operation) of this unit.
// lo = node0, hi = node1
const int addr_pin = 7;
// The actual value of the node's address will be filled in by the sketch
// when it reads the addr_pin
int node_address;
// sets the role of this unit in hardware. Connect to GND to be the 'ping' sender.
// Connect to +5V to be the 'pong' receiver.
const int role_pin = 7;
//
// Topology
@ -47,21 +43,18 @@ const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up address & role. This sketch uses the same software for all the nodes
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the addr_pin. Set it low for address #0, high for #1.
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_rx = 1, role_tx1, role_end } role_e;
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Receive", "Transmit"};
// Which role is assumed by each of the possible hardware addresses
const role_e role_map[2] = { role_rx, role_tx1 };
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
@ -69,17 +62,19 @@ role_e role;
void setup(void)
{
//
// Address & Role
// Role
//
// set up the address pin
pinMode(addr_pin, INPUT);
digitalWrite(addr_pin,HIGH);
delay(20); // Just to get a solid reading on the addr pin
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our address and role
node_address = digitalRead(addr_pin) ? 0 : 1;
role = role_map[node_address];
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_pong_back;
else
role = role_ping_out;
//
// Print preamble
@ -87,8 +82,7 @@ void setup(void)
Serial.begin(9600);
printf_begin();
printf("\n\rRF24 pingpair example\n\r");
printf("ADDRESS: %x\n\r",node_address);
printf("\n\rRF24/examples/pingpair/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
@ -97,32 +91,26 @@ void setup(void)
radio.begin();
// Set channel (optional)
radio.setChannel(1);
// Set size of payload (optional, but recommended)
// The library uses a fixed-size payload, so if you don't set one, it will pick
// one for you!
radio.setPayloadSize(sizeof(unsigned long));
//
// Open pipes to other nodes for communication (required)
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
// We will open 'our' pipe for writing
radio.openWritingPipe(pipes[node_address]);
// We open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
int other_node_address;
if (node_address == 0)
other_node_address = 1;
if ( role == role_ping_out )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else
other_node_address = 0;
radio.openReadingPipe(1,pipes[other_node_address]);
{
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
@ -139,10 +127,10 @@ void setup(void)
void loop(void)
{
//
// Transmitter role. Repeatedly send the current time
// Ping out role. Repeatedly send the current time
//
if (role == role_tx1)
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
@ -150,7 +138,7 @@ void loop(void)
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time );
bool ok = radio.write( &time, sizeof(unsigned long) );
// Now, continue listening
radio.startListening();
@ -171,7 +159,7 @@ void loop(void)
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time );
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
@ -182,10 +170,10 @@ void loop(void)
}
//
// Receiver role. Receive each packet, dump it out, and send it back to the transmitter
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_rx )
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
@ -196,7 +184,7 @@ void loop(void)
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time );
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu...",got_time);
@ -206,7 +194,7 @@ void loop(void)
radio.stopListening();
// Send the final one back.
radio.write( &got_time );
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
@ -214,3 +202,4 @@ void loop(void)
}
}
}
// vim:ci sts=2 sw=2 ft=cpp