Deleted starping relay. Superseded by RF24Network.

This commit is contained in:
maniacbug 2011-06-27 21:24:17 -07:00
parent e7c30f265f
commit 549d4054fb
4 changed files with 0 additions and 901 deletions

View file

@ -1 +0,0 @@
output/

View file

@ -1,305 +0,0 @@
# Arduino Makefile
# Arduino adaptation by mellis, eighthave, oli.keller
# Modified by Kerry Wong to support NetBeans
# Modified by Rob Gray (Graynomad) for use with Windows and no IDE
# This works in my environment and I use it to program two different
# 328-based boards and a Mega2560. It's not necessarily robust and
# I may have broken something in the original file that I don't use.
#
# This makefile allows you to build sketches from the command line
# without the Arduino environment.
#
# Instructions for using the makefile:
#
# 1. Copy this file into the folder with your sketch. The project code file
# should have a .c extension however the file gets copied to a .cpp before
# compilation so you still write in C++.
#
# 2. Modify the lines between the double ### rows to set the paths
# comm ports etc for your system. EG. c:/progra~1/arduino/arduino-00
# for the Arduino IDE, Note the use of short folder name, don't use
# "Program files" because spaces will break the build.
#
# Set the line containing "MCU" to match your board's processor.
# Typically ATmega328 or ATmega2560. If you're using a LilyPad Arduino,
# change F_CPU to 8000000.
#
# 3. At the command line, change to the directory containing your
# program's file and the makefile.
#
# 4. Type "make" and press enter to compile/verify your program.
# The default make target will also perform the uplode using avrdude.
#
# The first time this is done all required libraries will be built
# and a core.a file will be created in the output folder.
#
# NOTES:
# All output goes into a folder called "output" underneath the working folder.
# The default all: target creates symbol (.sym) and expanded assembly
# (.lss) files and uploads the program.
#
#
##########################################################
##########################################################
# Select processor here
MCU = atmega328p
#MCU = atmega2560
ifeq ($(MCU),atmega2560)
UPLOAD_RATE = 115200
AVRDUDE_PROTOCOL = stk500v2
COM = 39
endif
ifeq ($(MCU),atmega328p)
UPLOAD_RATE = 57600
AVRDUDE_PROTOCOL = stk500v1
COM = 33
endif
UNAME := $(shell uname)
ifeq ($(UNAME),Darwin)
ARDUINO_VERSION = 21
ARDUINO_DIR = /opt/arduino-00$(ARDUINO_VERSION)
AVR_TOOLS_PATH = $(ARDUINO_DIR)/hardware/tools/avr/bin
AVRDUDECONFIG_PATH = $(ARDUINO_DIR)/hardware/tools/avr/etc
PORT = /dev/tty.usbserial-A600eHIs
PORT2 = /dev/tty.usbserial-A9007LmI
PORT3 = /dev/tty.usbserial-A40081RP
else
ARDUINO_VERSION = 22
ARDUINO_DIR = /opt/arduino-00$(ARDUINO_VERSION)
AVR_TOOLS_PATH = /usr/bin
AVRDUDECONFIG_PATH = $(ARDUINO_DIR)/hardware/tools
PORT = /dev/ttyUSB0
PORT2 = /dev/ttyUSB1
endif
# Temporary testing of github Arduino environment
OLD_DIR = /opt/arduino-00$(ARDUINO_VERSION)
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc
ARDUINO_DIR = /opt/Arduino
PROJECT_NAME = $(notdir $(PWD))
PROJECT_DIR = .
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino
ARDUINO_AVR = $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr
ARDUINO_LIB = $(ARDUINO_DIR)/libraries
F_CPU = 16000000
##########################################################
##########################################################
# Note that if your program has dependencies other than those
# already listed below, you will need to add them accordingly.
C_MODULES = \
$(ARDUINO_CORE)/wiring_pulse.c \
$(ARDUINO_CORE)/wiring_analog.c \
$(ARDUINO_CORE)/pins_arduino.c \
$(ARDUINO_CORE)/wiring.c \
$(ARDUINO_CORE)/wiring_digital.c \
$(ARDUINO_CORE)/WInterrupts.c \
$(ARDUINO_CORE)/wiring_shift.c \
CXX_MODULES = \
$(ARDUINO_CORE)/Tone.cpp \
$(ARDUINO_CORE)/main.cpp \
$(ARDUINO_CORE)/WMath.cpp \
$(ARDUINO_CORE)/Print.cpp \
$(ARDUINO_CORE)/HardwareSerial.cpp \
$(ARDUINO_LIB)/SPI/SPI.cpp \
$(ARDUINO_LIB)/EEPROM/EEPROM.cpp \
../../RF24.cpp
CXX_APP = output/$(PROJECT_NAME).cpp
MODULES = $(C_MODULES) $(CXX_MODULES)
SRC = $(C_MODULES)
CXXSRC = $(CXX_MODULES) $(CXX_APP)
FORMAT = ihex
# Name of this Makefile (used for "make depend").
MAKEFILE = Makefile
# Debugging format.
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
#DEBUG = stabs
DEBUG =
OPT = s
# Place -D or -U options here
CDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
CXXDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
# Place -I options here
CINCS = -I$(ARDUINO_LIB)/EEPROM -I$(ARDUINO_CORE) -I$(ARDUINO_LIB) -I$(PROJECT_DIR) -I$(ARDUINO_AVR) -I$(ARDUINO_LIB)/SPI -I../..
CXXINCS = -I$(ARDUINO_CORE) -I$(ARDUINO_LIB)
# Compiler flag to set the C Standard level.
# c89 - "ANSI" C
# gnu89 - c89 plus GCC extensions
# c99 - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
#CSTANDARD = -std=gnu99
CDEBUG = -g$(DEBUG)
#CWARN = -Wall -Wstrict-prototypes
CWARN = -Wall # show all warnings
#CWARN = -w # suppress all warnings
CMAP = -Wl,-Map,output.map
####CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CTUNING = -ffunction-sections -fdata-sections
CXXTUNING = -fno-exceptions -ffunction-sections -fdata-sections
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
MMCU = -mmcu=$(MCU)
CFLAGS = $(CDEBUG) -O$(OPT) $(CMAP) $(CWARN) $(CTUNING) $(MMCU) $(CDEFS) $(CINCS) $(CSTANDARD) $(CEXTRA)
CXXFLAGS = $(CDEBUG) -O$(OPT) $(CWARN) $(CXXTUNING) $(CDEFS) $(CINCS)
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
LDFLAGS = -O$(OPT) -lm -Wl,--gc-sections
#LDFLAGS = -O$(OPT) -lm -Wl,-Map,output/$(PROJECT_NAME).map
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:output/$(PROJECT_NAME).hex:i
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf \
-p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE)
# Program settings
CC = $(AVR_TOOLS_PATH)/avr-gcc
CXX = $(AVR_TOOLS_PATH)/avr-g++
LD = $(AVR_TOOLS_PATH)/avr-gcc
OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
AR = $(AVR_TOOLS_PATH)/avr-ar
SIZE = $(AVR_TOOLS_PATH)/avr-size
NM = $(AVR_TOOLS_PATH)/avr-nm
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude
REMOVE = rm -f
MV = mv -f
# Define all object files.
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
OBJ_MODULES = $(C_MODULES:.c=.o) $(CXX_MODULES:.cpp=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = $(CFLAGS) -mmcu=$(MCU)
ALL_CXXFLAGS = $(CXXFLAGS) -mmcu=$(MCU)
ALL_ASFLAGS = -x assembler-with-cpp $(ASFLAGS) -mmcu=$(MCU)
ALL_LDFLAGS = $(LDFLAGS) -mmcu=$(MCU)
# Default target.
# This is th etarget that gets executed with a make command
# that has no parameters, ie "make".
all: applet_files build sym lss size upload
build: elf hex
output/$(PROJECT_NAME).cpp: $(PROJECT_NAME).pde
test -d output || mkdir output
echo "#include <WProgram.h>" > $@
echo "#line 1 \"$<\"" >> $@
cat $< >> $@
elf: output/$(PROJECT_NAME).elf
hex: output/$(PROJECT_NAME).hex
eep: output/$(PROJECT_NAME).eep
lss: output/$(PROJECT_NAME).lss
#sym: output/$(PROJECT_NAME).sym
# Upload HEX file to Arduino
upload: upload1 upload2
upload1: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT) $(AVRDUDE_WRITE_FLASH)
upload2: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT2) $(AVRDUDE_WRITE_FLASH)
upload3: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT3) $(AVRDUDE_WRITE_FLASH)
sym:
$(NM) -n -C --format=posix output/$(PROJECT_NAME).elf > output/$(PROJECT_NAME).sym
# Display size of file.
size:
$(SIZE) output/$(PROJECT_NAME).elf
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: output/$(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
extcoff: $(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-ext-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
.SUFFIXES: .elf .hex .eep .lss .sym
.elf.hex:
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
.elf.eep:
$(OBJCOPY) -O $(FORMAT) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--no-change-warnings \
--change-section-lma .eeprom=0 $< $@
# Create extended listing file from ELF output file.
.elf.lss:
$(OBJDUMP) -h -S $< > $@
# Link: create ELF output file from library.
#output/$(PROJECT_NAME).elf: $(PROJECT_NAME).c output/core.a
output/$(PROJECT_NAME).elf: output/$(PROJECT_NAME).o output/core.a
$(LD) $(ALL_LDFLAGS) -o $@ output/$(PROJECT_NAME).o output/core.a
output/core.a: $(OBJ_MODULES)
@for i in $(OBJ_MODULES); do echo $(AR) rcs output/core.a $$i; $(AR) rcs output/core.a $$i; done
# Compile: create object files from C++ source files.
.cpp.o:
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
# Compile: create object files from C source files.
.c.o:
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
.c.s:
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
.S.o:
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Automatic dependencies
%.d: %.c
$(CC) -M $(ALL_CFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
%.d: %.cpp
$(CXX) -M $(ALL_CXXFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
# Target: clean project.
clean:
$(REMOVE) output/$(PROJECT_NAME).hex output/$(PROJECT_NAME).eep output/$(PROJECT_NAME).cof output/$(PROJECT_NAME).elf \
output/$(PROJECT_NAME).map output/$(PROJECT_NAME).sym output/$(PROJECT_NAME).lss output/core.a \
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
#.PHONY: all build elf hex eep lss sym program coff extcoff clean applet_files sizebefore sizeafter
.PHONY: all build elf hex eep lss sym program coff extcoff applet_files sizebefore sizeafter
#include $(SRC:.c=.d)
#include $(CXXSRC:.cpp=.d)

View file

@ -1,33 +0,0 @@
/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#include "WProgram.h"
int serial_putc( char c, FILE *t )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#endif // __PRINTF_H__

View file

@ -1,562 +0,0 @@
/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Star Group with Relay
*
* This sketch is a very complex example of using the RF24 library for Arduino.
* Deploy this on any number of nodes to create a basic mesh network. I have
* tested this on 6 nodes, but it should work on many more. Although if there
* are a lot more nodes, increase the ping_interval, or the base will be
* overwhelmed!
*
* There are three different roles a node can be:
*
* @li Leaf. Leaf nodes send a ping to the base unit, and wait for a pong in
* return
*
* @li Relay. Relay nodes do the same as a leaf node, AND they relay pings
* from leaf nodes toward the base, and relay pongs toward the leaves.
*
* @li Base. One node is the base station, which receives pings, and sends
* a pong back out.
*
* The address of each node is a number from 0 to n (the # of known nodes).
* It is set in EEPROM. To change a node's address, send the character code
* for that address. e.g. send the character '5' to set address 5.
*
* The role is determined from the topology table. Leafs have no children.
* The base node has no parent. Relays have parents and children.
*/
#include <SPI.h>
#include <EEPROM.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 8 & 9
RF24 radio(8,9);
//
// Topology
//
struct node_info
{
uint64_t talking_pipe; // Pipe used to talk to parent node
uint64_t listening_pipe; // Pipe used to listen to parent node
uint8_t parent_node; // Address of parent node
};
const node_info topology[] =
{
{ 0x0000000000LL, 0x0000000000LL,-1 }, // Base
{ 0xF0F0F0F0E1LL, 0x3A3A3A3AE1LL, 0 }, // Relay
{ 0xF0F0F0F0D2LL, 0x3A3A3A3AD2LL, 1 }, // Leaf
{ 0xF0F0F0F0C3LL, 0x3A3A3A3AC3LL, 1 }, // Leaf
{ 0xF0F0F0F0B4LL, 0x3A3A3A3AB4LL, 1 }, // Leaf
{ 0xF0F0F0F0A5LL, 0x3A3A3A3AA5LL, 0 }, // Leaf, direct to Base
};
const short num_nodes = sizeof(topology)/sizeof(node_info);
/**
* Find where to send a message to reach the target node
*
* Given the @p target_node, find the child or parent of
* the @p current_node which will relay messages for the target.
*
* This is needed in a multi-hop system where the @p current_node
* is not adjacent to the @p target_node in the topology
*/
uint8_t find_node( uint8_t current_node, uint8_t target_node )
{
uint8_t out_node = target_node;
bool found_target = false;
while ( ! found_target )
{
if ( topology[out_node].parent_node == current_node )
{
found_target = true;
}
else
{
out_node = topology[out_node].parent_node;
// If we've made it all the way back to the base without finding
// common lineage with the to_node, we will just send it to our parent
if ( out_node == 0 || out_node == -1 )
{
out_node = topology[current_node].parent_node;
found_target = true;
}
}
}
return out_node;
}
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. Role is
// determined by the topology table.
//
// The various roles supported by this sketch
typedef enum { role_invalid = 0, role_base, role_relay, role_leaf } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Base", "Relay", "Leaf" };
// The role of the current running sketch
role_e role;
//
// Address management
//
// Where in EEPROM is the address stored?
const uint8_t address_at_eeprom_location = 0;
// What flag value is stored there so we know the value is valid?
const uint8_t valid_eeprom_flag = 0xdf;
// What is our address (SRAM cache of the address from EEPROM)
// This is an index into the topology[] table above
uint8_t node_address = -1;
//
// Payload
//
struct payload_t
{
uint8_t from_node;
uint8_t to_node;
uint16_t id;
unsigned long time;
static uint16_t next_id;
payload_t(void) {}
payload_t(uint8_t _from, uint8_t _to, const unsigned long& _time): from_node(_from), to_node(_to), id(next_id++), time(_time) {}
};
uint16_t payload_t::next_id;
void payload_printf(const char* name, const payload_t& pl)
{
printf("%s Payload from:%u to:%u id:%u time:%lu",name,pl.from_node,pl.to_node,pl.id,pl.time);
}
//
// Setup/loop shared statics
//
static unsigned long last_ping_sent_at;
static bool waiting_for_pong = false;
static short consecutive_timeouts;
const unsigned long ping_interval = 2000; // ms
const unsigned long pong_timeout = 250; // ms
const unsigned long ping_phase_shift = 100; // ms
const short timeout_shift_threshold = 3;
// Space to track the last packet we received from each node, useful
// for tracking lost packets
static uint16_t last_id_received[num_nodes];
void setup(void)
{
//
// Address
//
// Look for the token in EEPROM to indicate the following value is
// a validly set node address
if ( EEPROM.read(address_at_eeprom_location) == valid_eeprom_flag )
{
// Read the address from EEPROM
uint8_t reading = EEPROM.read(address_at_eeprom_location+1);
// If it is in a valid range for node addresses, it is our
// address.
if ( reading <= 5 )
node_address = reading;
}
//
// Role
//
// Role is determined by address.
if ( node_address != -1 )
{
// Node #0 is the base, by definition
if ( node_address == 0 )
role = role_base;
else
{
// Otherwise, it is probably a leaf node
role = role_leaf;
// If there are any nodes in the topology table which consider this
// a parent, then we are a relay.
int i = num_nodes;
while (i--)
{
if ( topology[i].parent_node == node_address )
{
role = role_relay;
break;
}
}
}
}
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/starping_relay/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("ADDRESS: %i\n\r",node_address);
//
// Setup and configure rf radio
//
radio.begin();
//
// Open pipes to other nodes for communication
//
// Each leaf node has a talking pipe that it will ping into, and a listening
// pipe that it will listen for the pong. Relay nodes also do this.
if ( role == role_leaf )
{
// Write on our talking pipe
radio.openWritingPipe(topology[node_address].talking_pipe);
// Listen on our listening pipe
radio.openReadingPipe(1,topology[node_address].listening_pipe);
}
// Relay nodes have a special function. They open their listening pipe on pipe
// #0. This will get over-written every time we open a writing pipe. So
// Remember to re-open the reading pipe whenever we start to listen again.
if ( role == role_relay )
{
// Write on our talking pipe
radio.openWritingPipe(topology[node_address].talking_pipe);
// Listen on our listening pipe
radio.openReadingPipe(0,topology[node_address].listening_pipe);
}
// The base and relay nodes listen on all their children node's talking pipes
// and sends the pong back on the child node's specific listening pipe.
if ( role == role_base || role == role_relay )
{
// First child listening pipe is #1
uint8_t current_pipe = 1;
// The topology table tells us who our children are
int i = num_nodes;
while (i--)
{
if ( topology[i].parent_node == node_address )
radio.openReadingPipe(current_pipe++,topology[i].talking_pipe);
}
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
//
// Prompt the user to assign a node address if we don't have one
//
if ( role == role_invalid )
{
printf("\n\r*** NO NODE ADDRESS ASSIGNED *** Send 0 through 5 to assign an address\n\r");
}
}
void ping_if_ready(void);
void handle_pong(const payload_t& payload);
void check_pong_timeout(void);
void loop(void)
{
//
// Leaf role. Repeatedly send the current time
//
if ( role == role_leaf )
{
ping_if_ready();
check_pong_timeout();
// Did we get a pong?
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
payload_t payload;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &payload, sizeof(payload_t) );
handle_pong(payload);
}
}
}
//
// Relay role. Forward packets to the appropriate destination
//
if ( role == role_relay )
{
#if 1
// Relay role is ALSO a ping sender!!
ping_if_ready();
check_pong_timeout();
#endif
// if there is data ready
uint8_t pipe_num;
if ( radio.available(&pipe_num) )
{
// Dump the payloads until we've gotten everything
payload_t payload;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &payload, sizeof(payload_t) );
// Is this for us?
if ( payload.to_node == node_address )
{
handle_pong(payload);
}
else
{
// Relay it
// Spew it
printf("%lu ",millis());
payload_printf("RELAY",payload);
printf(" on pipe %u. ",pipe_num);
// Which pipe should we use to get the message to the "to_node"?
// We need to find a node who is OUR CHILD that either IS the to_node
// or has the to_node as one of ITS children. Failing that, we'll just
// send it back to the parent to deal with.
uint8_t out_node = find_node(node_address,payload.to_node);
// First, stop listening so we can talk
radio.stopListening();
// If this node is our child, we talk on it's listening pipe.
uint64_t out_pipe;
if ( topology[out_node].parent_node == node_address )
out_pipe = topology[out_node].listening_pipe;
// Otherwise, it's our parent so we talk on OUR talking pipe
else
out_pipe = topology[node_address].talking_pipe;
// Open the correct pipe for writing.
radio.openWritingPipe(out_pipe);
// Send the payload back out
bool ok = radio.write( &payload, sizeof(payload_t) );
// Debug spew
uint16_t pipe_id = out_pipe & 0xffff;
printf("OUT on pipe %04x %s.\n\r",pipe_id,ok?"ok":"failed");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
}
//
// Base role. Receive each packet, dump it out, and send it back
//
if ( role == role_base )
{
// if there is data ready
uint8_t pipe_num;
if ( radio.available(&pipe_num) )
{
// Dump the payloads until we've gotten everything
payload_t ping;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &ping, sizeof(payload_t) );
// Spew it
printf("%lu ",millis());
payload_printf("PING",ping);
printf(" on pipe %u. ",pipe_num);
// Track the packets lost since we last heard from this node
// Packet loss is generally a sign of poor system health
uint16_t* last_id_ptr = &last_id_received[ping.from_node];
if ( *last_id_ptr && ping.id > *last_id_ptr )
{
uint16_t lost = ping.id - *last_id_ptr - 1;
if ( lost )
printf(" lost %u",lost);
}
*last_id_ptr = ping.id;
}
// First, stop listening so we can talk
radio.stopListening();
// Construct the return payload (pong)
payload_t pong(node_address,ping.from_node,ping.time);
// Find the correct pipe for writing. We can only talk on one of our
// direct children's listening pipes. If the to_node is further out,
// it will get relayed.
uint8_t out_node = find_node(node_address,pong.to_node);
// Open the correct pipe for writing
radio.openWritingPipe(topology[out_node].listening_pipe);
// Retain the low 2 bytes to identify the pipe for the spew
uint16_t pipe_id = topology[out_node].listening_pipe & 0xffff;
// Send the final one back.
bool ok = radio.write( &pong, sizeof(payload_t) );
payload_printf(" ...PONG",pong);
printf(" on pipe %04x %s.\n\r",pipe_id,ok?"ok":"failed");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
//
// Listen for serial input, which is how we set the address
//
if (Serial.available())
{
// If the character on serial input is in a valid range...
char c = Serial.read();
if ( c >= '0' && c <= '5' )
{
// It is our address
EEPROM.write(address_at_eeprom_location,valid_eeprom_flag);
EEPROM.write(address_at_eeprom_location+1,c-'0');
// And we are done right now (no easy way to soft reset)
printf("\n\rManually reset address to: %c\n\rPress RESET to continue!",c);
while(1);
}
}
}
void ping_if_ready(void)
{
// Is it time to ping again?
unsigned long now = millis();
if ( now - last_ping_sent_at >= ping_interval )
{
last_ping_sent_at = now;
waiting_for_pong = true;
// First, stop listening so we can talk.
radio.stopListening();
// Write on our talking pipe. The relay has to do this every time, because
// we ALSO use pipe 0 as a listening pipe.
radio.openWritingPipe(topology[node_address].talking_pipe);
// Take the time, and send it to the base. This will block until complete
payload_t ping(node_address,0,millis());
// Print details.
printf("%lu ",millis());
payload_printf(">PING",ping);
bool ok = radio.write( &ping, sizeof(payload_t) );
if (ok)
printf(" ok\n\r");
else
printf(" failed\n\r");
// Now, continue listening
radio.startListening();
}
}
void handle_pong(const payload_t& payload)
{
// Not waiting anymore, got one.
waiting_for_pong = false;
consecutive_timeouts = 0;
// Print details.
printf("%lu ",millis());
payload_printf(">PONG",payload);
printf(" Round-trip delay: %lu\n\r",millis()-payload.time);
}
void check_pong_timeout(void)
{
// Have we timed out waiting for our pong?
if ( waiting_for_pong && ( millis() - last_ping_sent_at > pong_timeout ) )
{
// Not waiting anymore, timed out.
waiting_for_pong = false;
// Timeouts usually happen because of collisions with other nodes
// getting a pong just as we are trying to send a ping. The best thing
// to do right now is offset our ping timing to search for a slot
// that's not occupied.
//
// Only do this after getting a few timeouts, so we aren't always skittishly
// moving around the cycle.
if ( ++consecutive_timeouts > timeout_shift_threshold )
last_ping_sent_at += ping_phase_shift;
// Print details
printf("%lu ",millis());
printf("TIMED OUT.\n\r");
}
}
// vim:ai:cin:sts=2 sw=2 ft=cpp