hydroponic-controller/include/waterlevel.h

214 lines
No EOL
5.6 KiB
C

#ifndef _WATERLEVEL_H_
#define _WATERLEVEL_H_
#include <Wire.h>
#include <VL53L0X.h> //pololu/VL53L0X@^1.3.1
// +++++++++++++++ Common Parameters ++++++++++
#define READINTERVAL_WATERLEVEL 500
#define WATERLEVELMEAN_SIZE 16
#define WATERLEVELMEAN_FILTER_CUTOFF 4 //max value is around WATERLEVELMEAN_SIZE/2
#define WATERLEVEL_UNAVAILABLE -1 //-1 is also timeout value
// +++++++++++++++ VL53L0X +++++++++++++++
VL53L0X tofsensor;
// Uncomment this line to use long range mode. This
// increases the sensitivity of the sensor and extends its
// potential range, but increases the likelihood of getting
// an inaccurate reading because of reflections from objects
// other than the intended target. It works best in dark
// conditions.
//#define LONG_RANGE
// Uncomment ONE of these two lines to get
// - higher speed at the cost of lower accuracy OR
// - higher accuracy at the cost of lower speed
//#define HIGH_SPEED
#define HIGH_ACCURACY
float waterlevelMean_array[WATERLEVELMEAN_SIZE];
uint16_t waterlevelMean_array_pos=0;
float waterlevel=WATERLEVEL_UNAVAILABLE;
float watervolume=WATERLEVEL_UNAVAILABLE;
//Calibration
float waterlevel_calib_offset=500.0; //c
float waterlevel_calib_factor=-1.0; //m
float waterlevel_calib_reservoirArea=20*20*3.1416; //area in cm^2. barrel diameter inside is 400mm
uint16_t distance_unsuccessful_count=0;
float waterlevel_heightToVolume(float distance);
mqttValueTiming timing_waterlevel;
void waterlevel_setup() {
/*
Wire.begin();
byte error, address;
int nDevices;
delay(500);
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
*/
timing_waterlevel.minchange=0.0;
timing_waterlevel.maxchange=7.0;
timing_waterlevel.mintime=30*000;
timing_waterlevel.maxtime=60*60*1000;
delay(50);
Wire.begin(PIN_SDA,PIN_SCL);
Serial.print("I2C Clock Speed=");
Serial.println(Wire.getClock());
tofsensor.setTimeout(2000);
if (!tofsensor.init())
{
Serial.println("Failed to detect and initialize tofsensor!");
publishInfo("error/waterlevel","Failed to detect and initialize tofsensor");
delay(1000);
}
#if defined LONG_RANGE
// lower the return signal rate limit (default is 0.25 MCPS)
tofsensor.setSignalRateLimit(0.1);
// increase laser pulse periods (defaults are 14 and 10 PCLKs)
tofsensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
tofsensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
#endif
#if defined HIGH_SPEED
// reduce timing budget to 20 ms (default is about 33 ms)
tofsensor.setMeasurementTimingBudget(20000);
#elif defined HIGH_ACCURACY
// increase timing budget to 200 ms
tofsensor.setMeasurementTimingBudget(200000);
#endif
for (uint16_t i=0;i<WATERLEVELMEAN_SIZE;i++) {
waterlevelMean_array[i]=WATERLEVEL_UNAVAILABLE; //-1 is also timeout value
}
}
void waterlevel_loop(unsigned long loopmillis) {
static unsigned long last_read_waterlevelB;
if (loopmillis>=last_read_waterlevelB+READINTERVAL_WATERLEVEL) {
last_read_waterlevelB=loopmillis;
uint16_t distance=tofsensor.readRangeSingleMillimeters(); //out of range =255
//Serial.print("Distance reading B="); Serial.print(distance);Serial.println();
if (distance!=WATERLEVEL_UNAVAILABLE && distance!=65535) { //successful
waterlevelMean_array[waterlevelMean_array_pos]=distance;
waterlevelMean_array_pos++;
waterlevelMean_array_pos%=WATERLEVELMEAN_SIZE;
distance_unsuccessful_count=0;
}else{
distance_unsuccessful_count++;
if (distance_unsuccessful_count%20==0) {
String _text="Distance unsuccessful count=";
_text.concat(distance_unsuccessful_count);
_text.concat(" distance=");
_text.concat(distance);
publishInfo("error/waterlevel",_text);
}
}
if (isValueArrayOKf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVEL_UNAVAILABLE)){
float _filteredDistance=getFilteredf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVELMEAN_FILTER_CUTOFF);
//Invert distance and offset
waterlevel=constrain(waterlevel_calib_offset+waterlevel_calib_factor*_filteredDistance,0,1000);
watervolume=waterlevel_heightToVolume(waterlevel);
//Serial.print("Filtered reading B="); Serial.print(_filteredDistance); Serial.print(" fixed="); Serial.println(waterlevelB); Serial.println();
//float _meanWaterlevel=getMeanf(waterlevelMean,WATERLEVELMEAN_SIZE);
//Serial.print("\t Dist="); Serial.print(_filteredWaterlevel); Serial.print("mm"); Serial.print("(+- "); Serial.print((getMaxf(waterlevelMean,WATERLEVELMEAN_SIZE)-getMinf(waterlevelMean,WATERLEVELMEAN_SIZE))/2.0); Serial.print(")"); Serial.print(" [mean="); Serial.print(_meanWaterlevel); Serial.print("]");
}else{
waterlevel=WATERLEVEL_UNAVAILABLE;
}
}
}
float waterlevel_heightToVolume(float distance){
return waterlevel_calib_reservoirArea/100 * distance/100; //area[cm^2] in dm^2 * height in dm = dm^3= L
}
#endif