99 lines
No EOL
3.5 KiB
C
99 lines
No EOL
3.5 KiB
C
#ifndef _WATERLEVEL_H_
|
|
#define _WATERLEVEL_H_
|
|
|
|
|
|
#include <HCSR04.h>
|
|
#define HCSR04_PIN_ECHO 17
|
|
#define HCSR04_PIN_TRIGGER 16
|
|
#define HCSR04_TIMEOUT 5000 //default is 100000 (uS)
|
|
#define READINTERVAL_HCSR04 200
|
|
|
|
#define WATERLEVELMEAN_SIZE 32
|
|
#define WATERLEVELMEAN_FILTER_CUTOFF 8 //max value is around WATERLEVELMEAN_SIZE/2
|
|
float waterlevelMean_array[WATERLEVELMEAN_SIZE];
|
|
uint16_t waterlevelMean_array_pos=0;
|
|
#define WATERLEVEL_UNAVAILABLE -1
|
|
float waterlevel=WATERLEVEL_UNAVAILABLE; //distance from floor to water surface [mm]
|
|
float watervolume=WATERLEVEL_UNAVAILABLE; //calculated Volume in Reservoir
|
|
|
|
uint16_t waterlevel_failcounter=0;
|
|
#define WATERLEVEL_MAXFAILS 15 //maximum counter value
|
|
#define WATERLEVEL_FAILTHRESHOLD 10 //if failcounter is greater or equal this value waterlevel will not be valid
|
|
|
|
//Calibration
|
|
float waterlevel_calib_offset_measured=0; //Sollwert
|
|
float waterlevel_calib_offset_sensor=178.67; //Istwert
|
|
|
|
float waterlevel_calib_reservoirArea=27*36.5; //area in cm^2
|
|
|
|
|
|
float waterlevel_heightToVolume(float distance);
|
|
|
|
|
|
void waterlevel_setup() {
|
|
|
|
//HCSR04.begin(HCSR04_PIN_TRIGGER, HCSR04_PIN_ECHO);
|
|
HCSR04.begin(HCSR04_PIN_TRIGGER, HCSR04_PIN_ECHO,HCSR04_TIMEOUT, HCSR04.eUltraSonicUnlock_t::unlockSkip);
|
|
for (uint16_t i=0;i<WATERLEVELMEAN_SIZE;i++) {
|
|
waterlevelMean_array[i]=-1; //-1 is also timeout value
|
|
|
|
}
|
|
}
|
|
|
|
void waterlevel_loop(unsigned long loopmillis) {
|
|
|
|
static unsigned long last_read_hcsr04;
|
|
if (loopmillis>=last_read_hcsr04+READINTERVAL_HCSR04) {
|
|
last_read_hcsr04=loopmillis;
|
|
float temperature=20.0;
|
|
if (tempCmean_air!=DEVICE_DISCONNECTED_C) { //sensor ok
|
|
temperature=tempCmean_air;
|
|
}
|
|
|
|
double* distances = HCSR04.measureDistanceMm(temperature);
|
|
double distance=distances[0];
|
|
//Serial.print("Distance reading:"); Serial.println(distance);
|
|
|
|
if (distance!=WATERLEVEL_UNAVAILABLE) { //successful
|
|
waterlevelMean_array[waterlevelMean_array_pos]=distance;
|
|
waterlevelMean_array_pos++;
|
|
waterlevelMean_array_pos%=WATERLEVELMEAN_SIZE;
|
|
if (waterlevel_failcounter>0) { //reduce failcounter if sucessfull
|
|
waterlevel_failcounter--;
|
|
}
|
|
}else{
|
|
if (waterlevel_failcounter<WATERLEVEL_MAXFAILS) {
|
|
waterlevel_failcounter++;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
if (isValueArrayOKf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVEL_UNAVAILABLE)){
|
|
//float _distance=getFilteredf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVELMEAN_FILTER_CUTOFF);
|
|
float _distance=getMaxf(waterlevelMean_array,WATERLEVELMEAN_SIZE);
|
|
|
|
//Invert distance and offset
|
|
waterlevel=distance-(waterlevel_calib_offset_sensor+waterlevel_calib_offset_measured);
|
|
watervolume=waterlevel_heightToVolume(_distance);
|
|
|
|
//float _meanWaterlevel=getMeanf(waterlevelMean,WATERLEVELMEAN_SIZE);
|
|
//Serial.print("\t Dist="); Serial.print(_filteredWaterlevel); Serial.print("mm"); Serial.print("(+- "); Serial.print((getMaxf(waterlevelMean,WATERLEVELMEAN_SIZE)-getMinf(waterlevelMean,WATERLEVELMEAN_SIZE))/2.0); Serial.print(")"); Serial.print(" [mean="); Serial.print(_meanWaterlevel); Serial.print("]");
|
|
}
|
|
|
|
if (waterlevel_failcounter>=WATERLEVEL_FAILTHRESHOLD) { //too many failed readings
|
|
waterlevel=WATERLEVEL_UNAVAILABLE;
|
|
watervolume=WATERLEVEL_UNAVAILABLE;
|
|
/*if (debug) {
|
|
Serial.print("Waterlevel Failcounter="); Serial.println(waterlevel_failcounter);
|
|
}*/
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
float waterlevel_heightToVolume(float distance){
|
|
return waterlevel_calib_reservoirArea/100 * distance/100; //area[cm^2] in dm^2 * height in dm = dm^3= L
|
|
}
|
|
|
|
#endif |