#ifndef _WATERLEVEL_H_ #define _WATERLEVEL_H_ #include <HCSR04.h> #define HCSR04_PIN_ECHO 17 #define HCSR04_PIN_TRIGGER 16 #define HCSR04_TIMEOUT 5000 //default is 100000 (uS) #define READINTERVAL_HCSR04 200 #define WATERLEVELMEAN_SIZE 32 #define WATERLEVELMEAN_FILTER_CUTOFF 8 //max value is around WATERLEVELMEAN_SIZE/2 float waterlevelMean_array[WATERLEVELMEAN_SIZE]; uint16_t waterlevelMean_array_pos=0; #define WATERLEVEL_UNAVAILABLE -1 float waterlevel=WATERLEVEL_UNAVAILABLE; //distance from floor to water surface [mm] float watervolume=WATERLEVEL_UNAVAILABLE; //calculated Volume in Reservoir uint16_t waterlevel_failcounter=0; #define WATERLEVEL_MAXFAILS 15 //maximum counter value #define WATERLEVEL_FAILTHRESHOLD 10 //if failcounter is greater or equal this value waterlevel will not be valid //Calibration float waterlevel_calib_offset_measured=0; //Sollwert float waterlevel_calib_offset_sensor=178.67; //Istwert float waterlevel_calib_reservoirArea=27*36.5; //area in cm^2 float waterlevel_heightToVolume(float distance); void waterlevel_setup() { //HCSR04.begin(HCSR04_PIN_TRIGGER, HCSR04_PIN_ECHO); HCSR04.begin(HCSR04_PIN_TRIGGER, HCSR04_PIN_ECHO,HCSR04_TIMEOUT, HCSR04.eUltraSonicUnlock_t::unlockSkip); for (uint16_t i=0;i<WATERLEVELMEAN_SIZE;i++) { waterlevelMean_array[i]=-1; //-1 is also timeout value } } void waterlevel_loop(unsigned long loopmillis) { static unsigned long last_read_hcsr04; if (loopmillis>=last_read_hcsr04+READINTERVAL_HCSR04) { last_read_hcsr04=loopmillis; float temperature=20.0; if (tempCmean_air!=DEVICE_DISCONNECTED_C) { //sensor ok temperature=tempCmean_air; } double* distances = HCSR04.measureDistanceMm(temperature); double distance=distances[0]; //Serial.print("Distance reading:"); Serial.println(distance); if (distance!=WATERLEVEL_UNAVAILABLE) { //successful waterlevelMean_array[waterlevelMean_array_pos]=distance; waterlevelMean_array_pos++; waterlevelMean_array_pos%=WATERLEVELMEAN_SIZE; if (waterlevel_failcounter>0) { //reduce failcounter if sucessfull waterlevel_failcounter--; } }else{ if (waterlevel_failcounter<WATERLEVEL_MAXFAILS) { waterlevel_failcounter++; } } if (isValueArrayOKf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVEL_UNAVAILABLE)){ //float _distance=getFilteredf(waterlevelMean_array,WATERLEVELMEAN_SIZE,WATERLEVELMEAN_FILTER_CUTOFF); float _distance=getMaxf(waterlevelMean_array,WATERLEVELMEAN_SIZE); //Invert distance and offset waterlevel=distance-(waterlevel_calib_offset_sensor+waterlevel_calib_offset_measured); watervolume=waterlevel_heightToVolume(_distance); //float _meanWaterlevel=getMeanf(waterlevelMean,WATERLEVELMEAN_SIZE); //Serial.print("\t Dist="); Serial.print(_filteredWaterlevel); Serial.print("mm"); Serial.print("(+- "); Serial.print((getMaxf(waterlevelMean,WATERLEVELMEAN_SIZE)-getMinf(waterlevelMean,WATERLEVELMEAN_SIZE))/2.0); Serial.print(")"); Serial.print(" [mean="); Serial.print(_meanWaterlevel); Serial.print("]"); } if (waterlevel_failcounter>=WATERLEVEL_FAILTHRESHOLD) { //too many failed readings waterlevel=WATERLEVEL_UNAVAILABLE; watervolume=WATERLEVEL_UNAVAILABLE; /*if (debug) { Serial.print("Waterlevel Failcounter="); Serial.println(waterlevel_failcounter); }*/ } } } float waterlevel_heightToVolume(float distance){ return waterlevel_calib_reservoirArea/100 * distance/100; //area[cm^2] in dm^2 * height in dm = dm^3= L } #endif