#include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" volatile int posl = 0; volatile int posr = 0; volatile int pwml = 0; volatile int pwmr = 0; volatile int weakl = 0; volatile int weakr = 0; extern volatile int speed; extern volatile adc_buf_t adc_buffer; extern volatile uint32_t timeout; uint32_t buzzerFreq = 0; uint32_t buzzerPattern = 0; uint8_t enable = 0; const int pwm_res = 64000000 / 2 / PWM_FREQ; // = 2000 const uint8_t hall_to_pos[8] = { 0, 0, 2, 1, 4, 5, 3, 0, }; inline void blockPWM(int pwm, int pos, int *u, int *v, int *w) { switch(pos) { case 0: *u = 0; *v = pwm; *w = -pwm; break; case 1: *u = -pwm; *v = pwm; *w = 0; break; case 2: *u = -pwm; *v = 0; *w = pwm; break; case 3: *u = 0; *v = -pwm; *w = pwm; break; case 4: *u = pwm; *v = -pwm; *w = 0; break; case 5: *u = pwm; *v = 0; *w = -pwm; break; default: *u = 0; *v = 0; *w = 0; } } inline void blockPhaseCurrent(int pos, int u, int v, int *q) { switch(pos) { case 0: *q = u - v; // *u = 0; // *v = pwm; // *w = -pwm; break; case 1: *q = u; // *u = -pwm; // *v = pwm; // *w = 0; break; case 2: *q = u; // *u = -pwm; // *v = 0; // *w = pwm; break; case 3: *q = v; // *u = 0; // *v = -pwm; // *w = pwm; break; case 4: *q = v; // *u = pwm; // *v = -pwm; // *w = 0; break; case 5: *q = -(u - v); // *u = pwm; // *v = 0; // *w = -pwm; break; default: *q = 0; // *u = 0; // *v = 0; // *w = 0; } } uint32_t buzzerTimer = 0; int offsetcount = 0; int offsetrl1 = 2000; int offsetrl2 = 2000; int offsetrr1 = 2000; int offsetrr2 = 2000; int offsetdcl = 2000; int offsetdcr = 2000; float batteryVoltage = BAT_NUMBER_OF_CELLS * 4.0; int curl = 0; // int errorl = 0; // int kp = 5; // volatile int cmdl = 0; int last_pos = 0; int timer = 0; const int max_time = PWM_FREQ / 10; volatile int vel = 0; //scan 8 channels with 2ADCs @ 20 clk cycles per sample //meaning ~80 ADC clock cycles @ 8MHz until new DMA interrupt =~ 100KHz //=640 cpu cycles void DMA1_Channel1_IRQHandler() { DMA1->IFCR = DMA_IFCR_CTCIF1; // HAL_GPIO_WritePin(LED_PORT, LED_PIN, 1); if(offsetcount < 1000) { // calibrate ADC offsets offsetcount++; offsetrl1 = (adc_buffer.rl1 + offsetrl1) / 2; offsetrl2 = (adc_buffer.rl2 + offsetrl2) / 2; offsetrr1 = (adc_buffer.rr1 + offsetrr1) / 2; offsetrr2 = (adc_buffer.rr2 + offsetrr2) / 2; offsetdcl = (adc_buffer.dcl + offsetdcl) / 2; offsetdcr = (adc_buffer.dcr + offsetdcr) / 2; return; } if (buzzerTimer % 1000 == 0) { // because you get float rounding errors if it would run every time batteryVoltage = batteryVoltage * 0.99 + ((float)adc_buffer.batt1 * ((float)BAT_CALIB_REAL_VOLTAGE / (float)BAT_CALIB_ADC)) * 0.01; } //disable PWM when current limit is reached (current chopping) if(ABS((adc_buffer.dcl - offsetdcl) * MOTOR_AMP_CONV_DC_AMP) > DC_CUR_LIMIT || timeout > TIMEOUT || enable == 0) { LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; //HAL_GPIO_WritePin(LED_PORT, LED_PIN, 1); } else { LEFT_TIM->BDTR |= TIM_BDTR_MOE; //HAL_GPIO_WritePin(LED_PORT, LED_PIN, 0); } if(ABS((adc_buffer.dcr - offsetdcr) * MOTOR_AMP_CONV_DC_AMP) > DC_CUR_LIMIT || timeout > TIMEOUT || enable == 0) { RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; } else { RIGHT_TIM->BDTR |= TIM_BDTR_MOE; } int ul, vl, wl; int ur, vr, wr; //determine next position based on hall sensors uint8_t hall_ul = !(LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN); uint8_t hall_vl = !(LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN); uint8_t hall_wl = !(LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN); uint8_t hall_ur = !(RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN); uint8_t hall_vr = !(RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN); uint8_t hall_wr = !(RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN); uint8_t halll = hall_ul * 1 + hall_vl * 2 + hall_wl * 4; posl = hall_to_pos[halll]; posl += 2; posl %= 6; uint8_t hallr = hall_ur * 1 + hall_vr * 2 + hall_wr * 4; posr = hall_to_pos[hallr]; posr += 2; posr %= 6; blockPhaseCurrent(posl, adc_buffer.rl1 - offsetrl1, adc_buffer.rl2 - offsetrl2, &curl); //setScopeChannel(2, (adc_buffer.rl1 - offsetrl1) / 8); //setScopeChannel(3, (adc_buffer.rl2 - offsetrl2) / 8); // uint8_t buzz(uint16_t *notes, uint32_t len){ // static uint32_t counter = 0; // static uint32_t timer = 0; // if(len == 0){ // return(0); // } // struct { // uint16_t freq : 4; // uint16_t volume : 4; // uint16_t time : 8; // } note = notes[counter]; // if(timer / 500 == note.time){ // timer = 0; // counter++; // } // if(counter == len){ // counter = 0; // } // timer++; // return(note.freq); // } //create square wave for buzzer buzzerTimer++; if (buzzerFreq != 0 && (buzzerTimer / 5000) % (buzzerPattern + 1) == 0) { if (buzzerTimer % buzzerFreq == 0) { HAL_GPIO_TogglePin(BUZZER_PORT, BUZZER_PIN); } } else { HAL_GPIO_WritePin(BUZZER_PORT, BUZZER_PIN, 0); } //update PWM channels based on position blockPWM(pwml, posl, &ul, &vl, &wl); blockPWM(pwmr, posr, &ur, &vr, &wr); int weakul, weakvl, weakwl; if (pwml > 0) { blockPWM(weakl, (posl+5) % 6, &weakul, &weakvl, &weakwl); } else { blockPWM(-weakl, (posl+1) % 6, &weakul, &weakvl, &weakwl); } ul += weakul; vl += weakvl; wl += weakwl; int weakur, weakvr, weakwr; if (pwmr > 0) { blockPWM(weakr, (posr+5) % 6, &weakur, &weakvr, &weakwr); } else { blockPWM(-weakr, (posr+1) % 6, &weakur, &weakvr, &weakwr); } ur += weakur; vr += weakvr; wr += weakwr; LEFT_TIM->LEFT_TIM_U = CLAMP(ul + pwm_res / 2, 10, pwm_res-10); LEFT_TIM->LEFT_TIM_V = CLAMP(vl + pwm_res / 2, 10, pwm_res-10); LEFT_TIM->LEFT_TIM_W = CLAMP(wl + pwm_res / 2, 10, pwm_res-10); RIGHT_TIM->RIGHT_TIM_U = CLAMP(ur + pwm_res / 2, 10, pwm_res-10); RIGHT_TIM->RIGHT_TIM_V = CLAMP(vr + pwm_res / 2, 10, pwm_res-10); RIGHT_TIM->RIGHT_TIM_W = CLAMP(wr + pwm_res / 2, 10, pwm_res-10); }