hoverboard-firmware-hack-fo.../Src/setup.c
EmanuelFeru b76e8ee466 Update BLDC controller
- added possbility to switch the Control mode while motor is spinning. NOT yet checked how motors behaves when swiching is triggered!
- added Cruise Control functionality: activated by button1 to GND (Blue Left or Right cable depending on selection). Functionality NOT yet tested in practice!
- extended Phase current measurements z_selPhaCurMeasABC : {iA,iB} = 0; {iB,iC} = 1; {iA,iC} = 2
- added interface for external motor angle measurement from as sensor, e.g., encoder. The selection can be done via b_angleMeasEna: 0 = Estimated (default), 1 = Measured.
- update the Field weakening Lo and Hi to fully blended.
- minor improvements:
   - Buttons initialization
   - lowered ADC margins in auto-calibration
   - commented out ADC_SAMPLETIME_239CYCLES_5, reported to give some issues when Hall sensor ADC input is used
2020-10-12 22:55:39 +02:00

714 lines
24 KiB
C

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
tim1 master, enable -> trgo
tim8, gated slave mode, trgo by tim1 trgo. overflow -> trgo
adc1,adc2 triggered by tim8 trgo
adc 1,2 dual mode
ADC1 ADC2
R_Blau PC4 CH14 R_Gelb PC5 CH15
L_Grün PA0 CH01 L_Blau PC3 CH13
R_DC PC1 CH11 L_DC PC0 CH10
BAT PC2 CH12 L_TX PA2 CH02
BAT PC2 CH12 L_RX PA3 CH03
pb10 usart3 dma1 channel2/3
*/
#include "defines.h"
#include "config.h"
#include "setup.h"
TIM_HandleTypeDef htim_right;
TIM_HandleTypeDef htim_left;
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
I2C_HandleTypeDef hi2c2;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
volatile adc_buf_t adc_buffer;
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
/* USART2 init function */
void UART2_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
huart2.Instance = USART2;
huart2.Init.BaudRate = USART2_BAUD;
huart2.Init.WordLength = USART2_WORDLENGTH;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart2);
}
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
/* USART3 init function */
void UART3_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
huart3.Instance = USART3;
huart3.Init.BaudRate = USART3_BAUD;
huart3.Init.WordLength = USART3_WORDLENGTH;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart3);
}
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) || \
defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspInit 0 */
/* USER CODE END USART2_MspInit 0 */
/* USART2 clock enable */
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART2 DMA Init */
/* USART2_RX Init */
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_rx);
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart2_rx);
/* USART2_TX Init */
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_NORMAL;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_tx);
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart2_tx);
/* USART2 interrupt Init */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspInit 1 */
__HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt
/* USER CODE END USART2_MspInit 1 */
}
else if(uartHandle->Instance==USART3)
{
/* USER CODE BEGIN USART3_MspInit 0 */
/* USER CODE END USART3_MspInit 0 */
/* USART3 clock enable */
__HAL_RCC_USART3_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**USART3 GPIO Configuration
PB10 ------> USART3_TX
PB11 ------> USART3_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USART3 DMA Init */
/* USART3_RX Init */
hdma_usart3_rx.Instance = DMA1_Channel3;
hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_rx);
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart3_rx);
/* USART3_TX Init */
hdma_usart3_tx.Instance = DMA1_Channel2;
hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_tx.Init.Mode = DMA_NORMAL;
hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_tx);
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart3_tx);
/* USART3 interrupt Init */
HAL_NVIC_SetPriority(USART3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
/* USER CODE BEGIN USART3_MspInit 1 */
__HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt
/* USER CODE END USART3_MspInit 1 */
}
}
void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle)
{
if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspDeInit 0 */
/* USER CODE END USART2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART2_CLK_DISABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3);
/* USART2 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART2 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspDeInit 1 */
/* USER CODE END USART2_MspDeInit 1 */
}
else if(uartHandle->Instance==USART3)
{
/* USER CODE BEGIN USART3_MspDeInit 0 */
/* USER CODE END USART3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART3_CLK_DISABLE();
/**USART3 GPIO Configuration
PB10 ------> USART3_TX
PB11 ------> USART3_RX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_10|GPIO_PIN_11);
/* USART3 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART3 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART3_IRQn);
/* USER CODE BEGIN USART3_MspDeInit 1 */
/* USER CODE END USART3_MspDeInit 1 */
}
}
#endif
DMA_HandleTypeDef hdma_i2c2_rx;
DMA_HandleTypeDef hdma_i2c2_tx;
void I2C_Init(void)
{
__HAL_RCC_I2C2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA1_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 1, 4);
HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 1, 3);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
hi2c2.Instance = I2C2;
hi2c2.Init.ClockSpeed = 200000;
hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(&hi2c2);
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* USER CODE BEGIN I2C2_MspInit 0 */
/* USER CODE END I2C2_MspInit 0 */
/**I2C2 GPIO Configuration
PB10 ------> I2C2_SCL
PB11 ------> I2C2_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C2_CLK_ENABLE();
/* Peripheral DMA init*/
hdma_i2c2_rx.Instance = DMA1_Channel5;
hdma_i2c2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_i2c2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2c2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2c2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_i2c2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_i2c2_rx.Init.Mode = DMA_NORMAL;
hdma_i2c2_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_Init(&hdma_i2c2_rx);
__HAL_LINKDMA(&hi2c2,hdmarx,hdma_i2c2_rx);
hdma_i2c2_tx.Instance = DMA1_Channel4;
hdma_i2c2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_i2c2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2c2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2c2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_i2c2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_i2c2_tx.Init.Mode = DMA_NORMAL;
hdma_i2c2_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_Init(&hdma_i2c2_tx);
__HAL_LINKDMA(&hi2c2,hdmatx,hdma_i2c2_tx);
/* Peripheral interrupt init */
HAL_NVIC_SetPriority(I2C2_EV_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(I2C2_EV_IRQn);
HAL_NVIC_SetPriority(I2C2_ER_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(I2C2_ER_IRQn);
/* USER CODE BEGIN I2C2_MspInit 1 */
/* USER CODE END I2C2_MspInit 1 */
}
void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = LEFT_HALL_U_PIN;
HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_V_PIN;
HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_W_PIN;
HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN;
HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN;
HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN;
HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Pin = CHARGER_PIN;
HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct);
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
GPIO_InitStruct.Pin = BUTTON1_PIN;
HAL_GPIO_Init(BUTTON1_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUTTON2_PIN;
HAL_GPIO_Init(BUTTON2_PORT, &GPIO_InitStruct);
#endif
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Pin = BUTTON_PIN;
HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pin = LED_PIN;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUZZER_PIN;
HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = OFF_PIN;
HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN;
HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_U_CUR_PIN;
HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_V_CUR_PIN;
HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN;
HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN;
HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN;
HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = DCLINK_PIN;
HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct);
//Analog in
#if !defined(SUPPORT_BUTTONS_LEFT)
GPIO_InitStruct.Pin = GPIO_PIN_3;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
#endif
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN;
HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN;
HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN;
HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN;
HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN;
HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN;
HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN;
HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN;
HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN;
HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN;
HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN;
HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN;
HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct);
}
void MX_TIM_Init(void) {
__HAL_RCC_TIM1_CLK_ENABLE();
__HAL_RCC_TIM8_CLK_ENABLE();
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
TIM_SlaveConfigTypeDef sTimConfig;
htim_right.Instance = RIGHT_TIM;
htim_right.Init.Prescaler = 0;
htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_right.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_right.Init.RepetitionCounter = 0;
htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_right);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig);
htim_left.Instance = LEFT_TIM;
htim_left.Init.Prescaler = 0;
htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_left.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_left.Init.RepetitionCounter = 0;
htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_left);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig);
sTimConfig.InputTrigger = TIM_TS_ITR0;
sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED;
HAL_TIM_SlaveConfigSynchronization(&htim_left, &sTimConfig);
// Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete.
// This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors
LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig);
LEFT_TIM->BDTR &= ~TIM_BDTR_MOE;
RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE;
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3);
htim_left.Instance->RCR = 1;
__HAL_TIM_ENABLE(&htim_right);
}
void MX_ADC1_Init(void) {
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC1_CLK_ENABLE();
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc1);
/**Enable or disable the remapping of ADC1_ETRGREG:
* ADC1 External Event regular conversion is connected to TIM8 TRG0
*/
__HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE();
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
//temperature requires at least 17.1uS sampling time
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE;
__HAL_ADC_ENABLE(&hadc1);
__HAL_RCC_DMA1_CLK_ENABLE();
DMA1_Channel1->CCR = 0;
DMA1_Channel1->CNDTR = 5;
DMA1_Channel1->CPAR = (uint32_t) & (ADC1->DR);
DMA1_Channel1->CMAR = (uint32_t)&adc_buffer;
DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE;
DMA1_Channel1->CCR |= DMA_CCR_EN;
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/* ADC2 init function */
void MX_ADC2_Init(void) {
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC2_CLK_ENABLE();
// HAL_ADC_DeInit(&hadc2);
// hadc2.Instance->CR2 = 0;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc2);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; // Commented-out to make `uart-l-rx` ADC sample time the same as `uart-l-tx`
sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
hadc2.Instance->CR2 |= ADC_CR2_DMA;
__HAL_ADC_ENABLE(&hadc2);
}