hoverboard-firmware-hack-fo.../Inc/config.h

321 lines
19 KiB
C

#pragma once
#include "stm32f1xx_hal.h"
//Select the calibration values for the different pcbs
//#define BOBBYCAR_PCB_FRONT //Green PCB
//#define BOBBYCAR_PCB_REAR //Blue PCB
#define HOVERBRETT //Green PCB in Hoverbrett
// ############################### DO-NOT-TOUCH SETTINGS ###############################
#define PWM_FREQ 16000 // PWM frequency in Hz
#define DEAD_TIME 32 // PWM deadtime
#define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing.
#define TIMEOUT 5 // number of wrong / missing input commands before emergency off
#define A2BIT_CONV 50 // A to bit for current conversion on ADC. Example: 1 A = 50, 2 A = 100, etc
// ADC conversion time definitions
#define ADC_CONV_TIME_1C5 (14) //Total ADC clock cycles / conversion = ( 1.5+12.5)
#define ADC_CONV_TIME_7C5 (20) //Total ADC clock cycles / conversion = ( 7.5+12.5)
#define ADC_CONV_TIME_13C5 (26) //Total ADC clock cycles / conversion = ( 13.5+12.5)
#define ADC_CONV_TIME_28C5 (41) //Total ADC clock cycles / conversion = ( 28.5+12.5)
#define ADC_CONV_TIME_41C5 (54) //Total ADC clock cycles / conversion = ( 41.5+12.5)
#define ADC_CONV_TIME_55C5 (68) //Total ADC clock cycles / conversion = ( 55.5+12.5)
#define ADC_CONV_TIME_71C5 (84) //Total ADC clock cycles / conversion = ( 71.5+12.5)
#define ADC_CONV_TIME_239C5 (252) //Total ADC clock cycles / conversion = (239.5+12.5)
// This settings influences the actual sample-time. Only use definitions above
// This parameter needs to be the same as the ADC conversion for Current Phase of the FIRST Motor in setup.c
#define ADC_CONV_CLOCK_CYCLES (ADC_CONV_TIME_7C5)
// Set the configured ADC divider. This parameter needs to be the same ADC divider as PeriphClkInit.AdcClockSelection (see main.c)
#define ADC_CLOCK_DIV (4)
// ADC Total conversion time: this will be used to offset TIM8 in advance of TIM1 to align the Phase current ADC measurement
// This parameter is used in setup.c
#define ADC_TOTAL_CONV_TIME (ADC_CLOCK_DIV * ADC_CONV_CLOCK_CYCLES) // = ((SystemCoreClock / ADC_CLOCK_HZ) * ADC_CONV_CLOCK_CYCLES), where ADC_CLOCK_HZ = SystemCoreClock/ADC_CLOCK_DIV
// ############################### GENERAL ###############################
/* How to calibrate: connect GND and RX of a 3.3v uart-usb adapter to the right sensor board cable
* Be careful not to use the red wire of the cable. 15v will destroye verything.).
* If you are using nunchuck, disable it temporarily. enable DEBUG_SERIAL_USART3 and DEBUG_SERIAL_ASCII use asearial terminal.
*/
/* Battery voltage calibration: connect power source. see <How to calibrate>.
* Write value nr 5 to BAT_CALIB_ADC. make and flash firmware.
* Then you can verify voltage on value 6 (to get calibrated voltage multiplied by 100).
*/
#define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16
#ifdef BOBBYCAR_PCB_REAR
//REAR WHEELS PCB
#define BAT_CALIB_REAL_VOLTAGE 4000 // input voltage measured by multimeter (multiplied by 100). In this case 40.00 V * 100 = 4000
#define BAT_CALIB_ADC 1593 // adc-value measured by mainboard (value nr 5 on UART debug output)
#endif
#ifdef BOBBYCAR_PCB_FRONT
#define BAT_CALIB_REAL_VOLTAGE 4000 // input voltage measured by multimeter (multiplied by 100). In this case 40.00 V * 100 = 4300
#define BAT_CALIB_ADC 1580 // adc-value measured by mainboard (value nr 5 on UART debug output)
#endif
#ifdef HOVERBRETT
#define BAT_CALIB_REAL_VOLTAGE 4300 // input voltage measured by multimeter (multiplied by 100). In this case 40.00 V * 100 = 4300
#define BAT_CALIB_ADC 1704 // adc-value measured by mainboard (value nr 5 on UART debug output)
#endif
#define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s
#define BAT_LOW_LVL1_ENABLE 0 // to beep or not to beep, 1 or 0
#define BAT_LOW_LVL2_ENABLE 1 // to beep or not to beep, 1 or 0
#define BAT_LOW_LVL1 (360 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // gently beeps at this voltage level. [V*100/cell]. In this case 3.60 V/cell
#define BAT_LOW_LVL2 (350 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // your battery is almost empty. Charge now! [V*100/cell]. In this case 3.50 V/cell
#define BAT_LOW_DEAD (337 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // undervoltage poweroff. (while not driving) [V*100/cell]. In this case 3.37 V/cell
/* Board overheat detection: the sensor is inside the STM/GD chip.
* It is very inaccurate without calibration (up to 45°C). So only enable this funcion after calibration!
* Let your board cool down. see <How to calibrate>.
* Get the real temp of the chip by thermo cam or another temp-sensor taped on top of the chip and write it to TEMP_CAL_LOW_DEG_C.
* Write debug value 8 to TEMP_CAL_LOW_ADC. drive around to warm up the board. it should be at least 20°C warmer. repeat it for the HIGH-values.
* Enable warning and/or poweroff and make and flash firmware.
*/
#define TEMP_FILT_COEF 655 // temperature filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16
#ifdef BOBBYCAR_PCB_REAR
//REAR WHEELS PCB
#define TEMP_CAL_LOW_ADC 1722 // temperature 1: ADC value
#define TEMP_CAL_LOW_DEG_C 220 // temperature 1: measured temperature [°C * 10]. Here 22.0 °C
#define TEMP_CAL_HIGH_ADC 1580 // temperature 2: ADC value
#define TEMP_CAL_HIGH_DEG_C 500 // temperature 2: measured temperature [°C * 10]. Here 50.0 °C
#endif
#ifdef BOBBYCAR_PCB_FRONT
//FRONT WHEELS PCB
#define TEMP_CAL_LOW_ADC 1722 // temperature 1: ADC value
#define TEMP_CAL_LOW_DEG_C 220 // temperature 1: measured temperature [°C * 10]. Here 22.0 °C
#define TEMP_CAL_HIGH_ADC 1580 // temperature 2: ADC value
#define TEMP_CAL_HIGH_DEG_C 500 // temperature 2: measured temperature [°C * 10]. Here °C
#endif
#ifdef HOVERBRETT
//Hoverbrett
#define TEMP_CAL_LOW_ADC 1716 // temperature 1: ADC value
#define TEMP_CAL_LOW_DEG_C 210 // temperature 1: measured temperature [°C * 10]. Here 22.0 °C
#define TEMP_CAL_HIGH_ADC 1600 // temperature 2: ADC value
#define TEMP_CAL_HIGH_DEG_C 420 // temperature 2: measured temperature [°C * 10]. Here °C
#endif
#define TEMP_WARNING_ENABLE 1 // to beep or not to beep, 1 or 0, DO NOT ACTIVITE WITHOUT CALIBRATION!
#define TEMP_WARNING 600 // annoying fast beeps [°C * 10]. Here 60.0 °C
#define TEMP_POWEROFF_ENABLE 0 // to poweroff or not to poweroff, 1 or 0, DO NOT ACTIVITE WITHOUT CALIBRATION!
#define TEMP_POWEROFF 650 // overheat poweroff. (while not driving) [°C * 10]. Here 65.0 °C
#define INACTIVITY_TIMEOUT 8 // minutes of not driving until poweroff. it is not very precise.
// ############################### LCD DEBUG ###############################
//#define DEBUG_I2C_LCD // standard 16x2 or larger text-lcd via i2c-converter on right sensor board cable
// ############################### SERIAL DEBUG ###############################
//#define DEBUG_SERIAL_SERVOTERM
#define DEBUG_SERIAL_ASCII // "1:345 2:1337 3:0 4:0 5:0 6:0 7:0 8:0\r\n"
// ############################### INPUT ###############################
// ###### CONTROL VIA UART (serial) ######
#define START_FRAME 0xAAAA // [-] Start frame definition for serial commands
#define SERIAL_TIMEOUT 160 // [-] Serial timeout duration for the received data. 160 ~= 0.8 sec. Calculation: 0.8 sec / 0.005 sec
#define USART2_BAUD 38400 // UART2 baud rate (long wired cable, soldered next to buzzer)
#define USART2_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B
//#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino
//#define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
//#define DEBUG_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#define USART3_BAUD 38400 // UART3 baud rate (short wired cable)
#define USART3_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B
//#define CONTROL_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used! For Arduino control check the hoverSerial.ino
//#define FEEDBACK_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used!
//#define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used!
// ## Select control type ##
#ifdef BOBBYCAR_PCB_FRONT
#define CONTROL_SERIAL_USART3
#define FEEDBACK_SERIAL_USART3
#endif
#ifdef BOBBYCAR_PCB_REAR
#define CONTROL_SERIAL_USART3
#define FEEDBACK_SERIAL_USART3
#endif
#ifdef HOVERBRETT
#define CONTROL_SERIAL_USART2
#define FEEDBACK_SERIAL_USART2
#endif
#if defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2)
#define UART_DMA_CHANNEL DMA1_Channel7
#endif
#if defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3)
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
// ###### CONTROL VIA RC REMOTE ######
// left sensor board cable. Channel 1: steering, Channel 2: speed.
//#define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2!
//#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.
// ###### CONTROL VIA TWO POTENTIOMETERS ######
/* ADC-calibration to cover the full poti-range:
* Connect potis to left sensor board cable (0 to 3.3V) (do NOT use the red 15V wire in the cable!). see <How to calibrate>.
* Turn the potis to minimum position, write value 1 to ADC1_MIN and value 2 to ADC2_MIN
* Turn the potis to maximum position, write value 1 to ADC1_MAX and value 2 to ADC2_MAX
* For middle resting potis: Let the potis in the middle resting position, write value 1 to ADC1_MID and value 2 to ADC2_MID
* Make, flash and test it.
*/
//#define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2, FEEDBACK_SERIAL_USART2, DEBUG_SERIAL_USART2!
// #define ADC1_MID_POT // ADC1 middle resting poti: comment-out if NOT a middle resting poti
#define ADC1_MIN 0 // min ADC1-value while poti at minimum-position (0 - 4095)
#define ADC1_MID 1963 // mid ADC1-value while poti at minimum-position (ADC1_MIN - ADC1_MAX)
#define ADC1_MAX 4095 // max ADC1-value while poti at maximum-position (0 - 4095)
// #define ADC2_MID_POT // ADC2 middle resting poti: comment-out if NOT a middle resting poti
#define ADC2_MIN 0 // min ADC2-value while poti at minimum-position (0 - 4095)
#define ADC2_MID 2006 // mid ADC2-value while poti at minimum-position (ADC2_MIN - ADC2_MAX)
#define ADC2_MAX 4095 // max ADC2-value while poti at maximum-position (0 - 4095)
// ###### CONTROL VIA NINTENDO NUNCHUCK ######
/* left sensor board cable.
* keep cable short, use shielded cable, use ferrits, stabalize voltage in nunchuck,
* use the right one of the 2 types of nunchucks, add i2c pullups.
* use original nunchuck. most clones does not work very well.
*/
// #define CONTROL_NUNCHUCK // use nunchuck as input. disable FEEDBACK_SERIAL_USART3, DEBUG_SERIAL_USART3!
// ############################### MOTOR CONTROL #########################
// Control selections
#define CTRL_TYP_SEL 2 // [-] Control type selection: 0 = Commutation , 1 = Sinusoidal, 2 = FOC Field Oriented Control (default)
#define CTRL_MOD_REQ 1 // [-] Control mode request: 0 = Open mode, 1 = VOLTAGE mode (default), 2 = SPEED mode, 3 = TORQUE mode. Note: SPEED and TORQUE modes are only available for FOC!
#define DIAG_ENA 1 // [-] Motor Diagnostics enable flag: 0 = Disabled, 1 = Enabled (default)
// Limitation settings
#define I_MOT_MAX 15 // [A] Maximum motor current limit
#define I_DC_MAX 17 // [A] Maximum DC Link current limit (This is the final current protection. Above this value, current chopping is applied. To avoid this make sure that I_DC_MAX = I_MOT_MAX + 2A)
#define N_MOT_MAX 1000 // [rpm] Maximum motor speed limit
// Field Weakening / Phase Advance
#define FIELD_WEAK_ENA 1 // [-] Field Weakening / Phase Advance enable flag: 0 = Disabled (default), 1 = Enabled
#define FIELD_WEAK_MAX 5 // [A] Maximum Field Weakening D axis current (only for FOC). Higher current results in higher maximum speed.
#define PHASE_ADV_MAX 25 // [deg] Maximum Phase Advance angle (only for SIN). Higher angle results in higher maximum speed.
#define FIELD_WEAK_HI 1500 // [-] Input target High threshold for reaching maximum Field Weakening / Phase Advance. Do NOT set this higher than 1500.
#define FIELD_WEAK_LO 1000 // [-] Input target Low threshold for starting Field Weakening / Phase Advance. Do NOT set this higher than 1000.
// Data checks - Do NOT touch
#if (FIELD_WEAK_ENA == 0)
#undef FIELD_WEAK_HI
#define FIELD_WEAK_HI 1000 // [-] This prevents the input target going beyond 1000 when Field Weakening is not enabled
#endif
#define INPUT_MAX MAX( 1000, FIELD_WEAK_HI) // [-] Defines the Input target maximum limitation
#define INPUT_MIN MIN(-1000,-FIELD_WEAK_HI) // [-] Defines the Input target minimum limitation
#define INPUT_MID INPUT_MAX / 2
/* GENERAL NOTES:
* 1. The above parameters are over-writing the default motor parameters. For all the available parameters check BLDC_controller_data.c
* 2. The parameters are represented in fixed point data type for a more efficient code execution
* 3. For calibrating the fixed-point parameters use the Fixed-Point Viewer tool (see <https://github.com/EmanuelFeru/FixedPointViewer>)
* 4. For more details regarding the parameters and the working principle of the controller please consult the Simulink model
* 5. A webview was created, so Matlab/Simulink installation is not needed, unless you want to regenerate the code. The webview is an html page that can be opened with browsers like: Microsoft Internet Explorer or Microsoft Edge
*
* NOTES Field Weakening / Phase Advance:
* 1. The Field Weakening is a linear interpolation from 0 to FIELD_WEAK_MAX or PHASE_ADV_MAX (depeding if FOC or SIN is selected, respectively)
* 2. The Field Weakening starts engaging at FIELD_WEAK_LO and reaches the maximum value at FIELD_WEAK_HI
* 3. If you re-calibrate the Field Weakening please take all the safety measures! The motors can spin very fast!
*/
// ############################### DRIVING BEHAVIOR ###############################
/* Inputs:
* - cmd1 and cmd2: analog normalized input values. INPUT_MIN to INPUT_MAX
* - button1 and button2: digital input values. 0 or 1
* - adc_buffer.l_tx2 and adc_buffer.l_rx2: unfiltered ADC values (you do not need them). 0 to 4095
* Outputs:
* - speedR and speedL: normal driving INPUT_MIN to INPUT_MAX
*/
// Value of RATE is in fixdt(1,16,4): VAL_fixedPoint = VAL_floatingPoint * 2^4. In this case 480 = 30 * 2^4
#define RATE 480 // 30.0f [-] lower value == slower rate [0, 32767] = [0.0, 2047.9375]. Do NOT make rate negative (>32767)
// Value of FILTER is in fixdt(0,16,16): VAL_fixedPoint = VAL_floatingPoint * 2^16. In this case 6553 = 0.1 * 2^16
#define FILTER 6553 // 0.1f [-] lower value == softer filter [0, 65535] = [0.0, 1.0].
// Value of COEFFICIENT is in fixdt(1,16,14)
// If VAL_floatingPoint >= 0, VAL_fixedPoint = VAL_floatingPoint * 2^14
// If VAL_floatingPoint < 0, VAL_fixedPoint = 2^16 + floor(VAL_floatingPoint * 2^14).
#define SPEED_COEFFICIENT 16384 // 1.0f [-] higher value == stronger. [0, 65535] = [-2.0, 2.0]. In this case 16384 = 1.0 * 2^14
#define STEER_COEFFICIENT 8192 // 0.5f [-] higher value == stronger. [0, 65535] = [-2.0, 2.0]. In this case 8192 = 0.5 * 2^14. If you do not want any steering, set it to 0.
#ifdef BOBBYCAR_PCB_REAR
//#define INVERT_R_DIRECTION
//#define INVERT_L_DIRECTION
#endif
#ifdef BOBBYCAR_PCB_FRONT
//#define INVERT_R_DIRECTION
//#define INVERT_L_DIRECTION
#endif
#ifdef HOVERBRETT
#define INVERT_R_DIRECTION
#define INVERT_L_DIRECTION
#endif
#define BEEPS_BACKWARD 0 // 0 or 1
// ###### SIMPLE BOBBYCAR ######
// for better bobbycar code see: https://github.com/larsmm/hoverboard-firmware-hack-bbcar
// #define FILTER 6553 // 0.1f
// #define SPEED_COEFFICIENT 49152 // -1.0f
// #define STEER_COEFFICIENT 0 // 0.0f
// ###### ARMCHAIR ######
// #define FILTER 3276 // 0.05f
// #define SPEED_COEFFICIENT 8192 // 0.5f
// #define STEER_COEFFICIENT 62259 // -0.2f
// ############################### VALIDATE SETTINGS ###############################
#if defined(CONTROL_SERIAL_USART2) && defined(CONTROL_SERIAL_USART3)
#error CONTROL_SERIAL_USART2 and CONTROL_SERIAL_USART3 not allowed, choose one.
#endif
#if defined(FEEDBACK_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART3)
#error FEEDBACK_SERIAL_USART2 and FEEDBACK_SERIAL_USART3 not allowed, choose one.
#endif
#if defined(DEBUG_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART2)
#error DEBUG_SERIAL_USART2 and FEEDBACK_SERIAL_USART2 not allowed, choose one.
#endif
#if defined(DEBUG_SERIAL_USART3) && defined(FEEDBACK_SERIAL_USART3)
#error DEBUG_SERIAL_USART3 and FEEDBACK_SERIAL_USART3 not allowed, choose one.
#endif
#if defined(DEBUG_SERIAL_USART2) && defined(DEBUG_SERIAL_USART3)
#error DEBUG_SERIAL_USART2 and DEBUG_SERIAL_USART3 not allowed, choose one.
#endif
#if defined(CONTROL_ADC) && (defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2))
#error CONTROL_ADC and SERIAL_USART2 not allowed. It is on the same cable.
#endif
#if (defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)) && defined(CONTROL_PPM)
#error CONTROL_PPM and SERIAL_USART2 not allowed. It is on the same cable.
#endif
#if (defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)) && defined(CONTROL_NUNCHUCK)
#error CONTROL_NUNCHUCK and SERIAL_USART3 not allowed. It is on the same cable.
#endif
#if (defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)) && defined(DEBUG_I2C_LCD)
#error DEBUG_I2C_LCD and SERIAL_USART3 not allowed. It is on the same cable.
#endif
#if defined(CONTROL_PPM) && defined(CONTROL_ADC) && defined(CONTROL_NUNCHUCK) || defined(CONTROL_PPM) && defined(CONTROL_ADC) || defined(CONTROL_ADC) && defined(CONTROL_NUNCHUCK) || defined(CONTROL_PPM) && defined(CONTROL_NUNCHUCK)
#error only 1 input method allowed. use CONTROL_PPM or CONTROL_ADC or CONTROL_NUNCHUCK.
#endif