#pragma once #include "stm32f1xx_hal.h" #define TRANSPOTTER // ############################### DO-NOT-TOUCH SETTINGS ############################### #define PWM_FREQ 16000 // PWM frequency in Hz #define DEAD_TIME 32 // PWM deadtime #ifdef TRANSPOTTER #define DELAY_IN_MAIN_LOOP 2 #else #define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing. #endif #define TIMEOUT 5 // number of wrong / missing input commands before emergency off #define A2BIT_CONV 50 // A to bit for current conversion on ADC. Example: 1 A = 50, 2 A = 100, etc // ADC conversion time definitions #define ADC_CONV_TIME_1C5 (14) //Total ADC clock cycles / conversion = ( 1.5+12.5) #define ADC_CONV_TIME_7C5 (20) //Total ADC clock cycles / conversion = ( 7.5+12.5) #define ADC_CONV_TIME_13C5 (26) //Total ADC clock cycles / conversion = ( 13.5+12.5) #define ADC_CONV_TIME_28C5 (41) //Total ADC clock cycles / conversion = ( 28.5+12.5) #define ADC_CONV_TIME_41C5 (54) //Total ADC clock cycles / conversion = ( 41.5+12.5) #define ADC_CONV_TIME_55C5 (68) //Total ADC clock cycles / conversion = ( 55.5+12.5) #define ADC_CONV_TIME_71C5 (84) //Total ADC clock cycles / conversion = ( 71.5+12.5) #define ADC_CONV_TIME_239C5 (252) //Total ADC clock cycles / conversion = (239.5+12.5) // This settings influences the actual sample-time. Only use definitions above // This parameter needs to be the same as the ADC conversion for Current Phase of the FIRST Motor in setup.c #define ADC_CONV_CLOCK_CYCLES (ADC_CONV_TIME_7C5) // Set the configured ADC divider. This parameter needs to be the same ADC divider as PeriphClkInit.AdcClockSelection (see main.c) #define ADC_CLOCK_DIV (4) // ADC Total conversion time: this will be used to offset TIM8 in advance of TIM1 to align the Phase current ADC measurement // This parameter is used in setup.c #define ADC_TOTAL_CONV_TIME (ADC_CLOCK_DIV * ADC_CONV_CLOCK_CYCLES) // = ((SystemCoreClock / ADC_CLOCK_HZ) * ADC_CONV_CLOCK_CYCLES), where ADC_CLOCK_HZ = SystemCoreClock/ADC_CLOCK_DIV // ############################### GENERAL ############################### /* How to calibrate: connect GND and RX of a 3.3v uart-usb adapter to the right sensor board cable * Be careful not to use the red wire of the cable. 15v will destroye verything.). * If you are using nunchuck, disable it temporarily. enable DEBUG_SERIAL_USART3 and DEBUG_SERIAL_ASCII use asearial terminal. */ /* Battery voltage calibration: connect power source. see . * Write value nr 5 to BAT_CALIB_ADC. make and flash firmware. * Then you can verify voltage on value 6 (to get calibrated voltage multiplied by 100). */ #define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16 #define BAT_CALIB_REAL_VOLTAGE 4300 // input voltage measured by multimeter (multiplied by 100). In this case 43.00 V * 100 = 4300 #define BAT_CALIB_ADC 1704 // adc-value measured by mainboard (value nr 5 on UART debug output) #define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s #define BAT_LOW_LVL1_ENABLE 0 // to beep or not to beep, 1 or 0 #define BAT_LOW_LVL2_ENABLE 1 // to beep or not to beep, 1 or 0 #define BAT_LOW_LVL1 (360 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // gently beeps at this voltage level. [V*100/cell]. In this case 3.60 V/cell #define BAT_LOW_LVL2 (350 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // your battery is almost empty. Charge now! [V*100/cell]. In this case 3.50 V/cell #define BAT_LOW_DEAD (337 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // undervoltage poweroff. (while not driving) [V*100/cell]. In this case 3.37 V/cell /* Board overheat detection: the sensor is inside the STM/GD chip. * It is very inaccurate without calibration (up to 45°C). So only enable this funcion after calibration! * Let your board cool down. see . * Get the real temp of the chip by thermo cam or another temp-sensor taped on top of the chip and write it to TEMP_CAL_LOW_DEG_C. * Write debug value 8 to TEMP_CAL_LOW_ADC. drive around to warm up the board. it should be at least 20°C warmer. repeat it for the HIGH-values. * Enable warning and/or poweroff and make and flash firmware. */ #define TEMP_FILT_COEF 655 // temperature filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16 #define TEMP_CAL_LOW_ADC 1655 // temperature 1: ADC value #define TEMP_CAL_LOW_DEG_C 358 // temperature 1: measured temperature [°C * 10]. Here 35.8 °C #define TEMP_CAL_HIGH_ADC 1588 // temperature 2: ADC value #define TEMP_CAL_HIGH_DEG_C 489 // temperature 2: measured temperature [°C * 10]. Here 48.9 °C #define TEMP_WARNING_ENABLE 0 // to beep or not to beep, 1 or 0, DO NOT ACTIVITE WITHOUT CALIBRATION! #define TEMP_WARNING 600 // annoying fast beeps [°C * 10]. Here 60.0 °C #define TEMP_POWEROFF_ENABLE 0 // to poweroff or not to poweroff, 1 or 0, DO NOT ACTIVITE WITHOUT CALIBRATION! #define TEMP_POWEROFF 650 // overheat poweroff. (while not driving) [°C * 10]. Here 65.0 °C #define INACTIVITY_TIMEOUT 8 // minutes of not driving until poweroff. it is not very precise. // ############################### LCD DEBUG ############################### //#define DEBUG_I2C_LCD // standard 16x2 or larger text-lcd via i2c-converter on right sensor board cable // ############################### SERIAL DEBUG ############################### #ifndef TRANSPOTTER #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used! #define DEBUG_BAUD 115200 // UART baud rate //#define DEBUG_SERIAL_SERVOTERM #define DEBUG_SERIAL_ASCII // "1:345 2:1337 3:0 4:0 5:0 6:0 7:0 8:0\r\n" #endif // ############################### INPUT ############################### // ###### CONTROL VIA UART (serial) ###### //#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! #define CONTROL_BAUD 19200 // control via usart from eg an Arduino or raspberry // for Arduino, use void loop(void){ Serial.write((uint8_t *) &steer, sizeof(steer)); Serial.write((uint8_t *) &speed, sizeof(speed));delay(20); } // ###### CONTROL VIA RC REMOTE ###### // left sensor board cable. Channel 1: steering, Channel 2: speed. //#define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2! //#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used. // ###### CONTROL VIA TWO POTENTIOMETERS ###### /* ADC-calibration to cover the full poti-range: * Connect potis to left sensor board cable (0 to 3.3V) (do NOT use the red 15V wire in the cable!). see . * Turn the potis to minimum position, write value 1 to ADC1_MIN and value 2 to ADC2_MIN * Turn the potis to maximum position, write value 1 to ADC1_MAX and value 2 to ADC2_MAX * For middle resting potis: Let the potis in the middle resting position, write value 1 to ADC1_MID and value 2 to ADC2_MID * Make, flash and test it. */ #ifndef TRANSPOTTER #define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2! #define ADC1_MID_POT // ADC1 middle resting poti: comment-out if NOT a middle resting poti #define ADC2_MID_POT // ADC2 middle resting poti: comment-out if NOT a middle resting poti #define ADC1_MIN 0 // min ADC1-value while poti at minimum-position (0 - 4095) #define ADC1_MID 1963 // mid ADC1-value while poti at minimum-position (ADC1_MIN - ADC1_MAX) #define ADC1_MAX 4095 // max ADC1-value while poti at maximum-position (0 - 4095) #define ADC2_MIN 0 // min ADC2-value while poti at minimum-position (0 - 4095) #define ADC2_MID 2006 // mid ADC2-value while poti at minimum-position (ADC2_MIN - ADC2_MAX) #define ADC2_MAX 4095 // max ADC2-value while poti at maximum-position (0 - 4095) #endif // ###### CONTROL VIA NINTENDO NUNCHUCK ###### /* left sensor board cable. * keep cable short, use shielded cable, use ferrits, stabalize voltage in nunchuck, * use the right one of the 2 types of nunchucks, add i2c pullups. * use original nunchuck. most clones does not work very well. */ // #define CONTROL_NUNCHUCK // use nunchuck as input. disable DEBUG_SERIAL_USART3! // ################################# TRANSPOTTER SETTINGS ############################ #ifdef TRANSPOTTER #define CONTROL_GAMETRAK #define SUPPORT_LCD #define SUPPORT_NUNCHUCK #define GAMETRAK_CONNECTION_NORMAL // for normal wiring according to the wiki instructions //#define GAMETRAK_CONNECTION_ALTERNATE // use this define instead if you messed up the gametrak ADC wiring (steering is speed, and length of the wire is steering) #define ROT_P 1.2 // P coefficient for the direction controller. Positive / Negative values to invert gametrak steering direction. #define FILTER 6553 // 0.1f - lower value == softer filter. do not use values <0.01, you will get float precision issues. //#define INVERT_R_DIRECTION // Invert right motor #define INVERT_L_DIRECTION // Invert left motor // during nunchuck control (only relevant when activated) #define SPEED_COEFFICIENT 14746 // 0.9f - higher value == stronger. 0.0 to ~2.0? #define STEER_COEFFICIENT 8192 // 0.5f - higher value == stronger. if you do not want any steering, set it to 0.0; 0.0 to 1.0 #endif // ############################### MOTOR CONTROL (overwrite) ######################### #define CTRL_TYP_SEL 1 // [-] Control type selection: 0 = Commutation , 1 = FOC Field Oriented Control (default) #define CTRL_MOD_REQ 1 // [-] Control mode request: 0 = Open mode, 1 = Voltage mode (default), 2 = Speed mode, 3 = Torque mode #define DIAG_ENA 1 // [-] Motor Diagnostics enable flag: 0 = Disabled, 1 = Enabled (default) #define FIELD_WEAK_ENA 0 // [-] Field Weakening enable flag: 0 = Disabled (default), 1 = Enabled #define I_MOT_MAX (15 * A2BIT_CONV) << 4 // [A] Maximum motor current limit (Change only the first number, the rest is needed for fixed-point conversion, fixdt(1,16,4)) #define I_DC_MAX (17 * A2BIT_CONV) // [A] Maximum DC Link current limit (This is the final current protection. Above this value, current chopping is applied. To avoid this make sure that I_DC_MAX = I_MOT_MAX + 2A ) #define N_MOT_MAX 800 << 4 // [rpm] Maximum motor speed (change only the first number, the rest is needed for fixed-point conversion, fixdt(1,16,4)) /* GENERAL NOTES: * 1. The above parameters are over-writing the default motor parameters. For all the available parameters check BLDC_controller_data.c * 2. The parameters are represented in fixed point data type for a more efficient code execution * 3. For calibrating the fixed-point parameters use the Fixed-Point Viewer tool (see ) * 4. For more details regarding the parameters and the working principle of the controller please consult the Simulink model * 5. A webview was created, so Matlab/Simulink installation is not needed, unless you want to regenerate the code * * NOTES Field weakening: * 1. In BLDC_controller_data.c you can find the field weakening Map as a function of input target: MAP = id_fieldWeak_M1, XAXIS = r_fieldWeak_XA * 2. The default calibration was experimentally calibrated to my particular needs * 3. If you re-calibrate the field weakening map please take all the safety measures! The motors can spin very fast! * 4. During the recalibration make sure the values in XAXIS are equally spaced for a correct Map interpolation. */ // ############################### DRIVING BEHAVIOR ############################### /* Inputs: * - cmd1 and cmd2: analog normalized input values. -1000 to 1000 * - button1 and button2: digital input values. 0 or 1 * - adc_buffer.l_tx2 and adc_buffer.l_rx2: unfiltered ADC values (you do not need them). 0 to 4095 * Outputs: * - speedR and speedL: normal driving -1000 to 1000 */ // Value of RATE is in fixdt(1,16,4): VAL_fixedPoint = VAL_floatingPoint * 2^4. In this case 480 = 30 * 2^4 #define RATE 480 // 30.0f [-] lower value == slower rate [0, 32767] = [0.0 - 2047.9375]. Do NOT make rate negative (>32767) #ifndef TRANSPOTTER // Value of FILTER is in fixdt(0,16,16): VAL_fixedPoint = VAL_floatingPoint * 2^16. In this case 6553 = 0.1 * 2^16 #define FILTER 6553 // 0.1f [-] lower value == softer filter [0, 65535] = [0.0 - 1.0]. // Value of COEFFICIENT is in fixdt(1,16,14) // If VAL_floatingPoint >= 0, VAL_fixedPoint = VAL_floatingPoint * 2^14 // If VAL_floatingPoint < 0, VAL_fixedPoint = 2^16 + floor(VAL_floatingPoint * 2^14). #define SPEED_COEFFICIENT 16384 // 1.0f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14 #define STEER_COEFFICIENT 8192 // 0.5f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 8192 = 0.5 * 2^14. If you do not want any steering, set it to 0. #define INVERT_R_DIRECTION #define INVERT_L_DIRECTION #endif #define BEEPS_BACKWARD 0 // 0 or 1 // ###### SIMPLE BOBBYCAR ###### // for better bobbycar code see: https://github.com/larsmm/hoverboard-firmware-hack-bbcar // #define FILTER 6553 // 0.1f // #define SPEED_COEFFICIENT 49152 // -1.0f // #define STEER_COEFFICIENT 0 // 0.0f // ###### ARMCHAIR ###### // #define FILTER 3276 // 0.05f // #define SPEED_COEFFICIENT 8192 // 0.5f // #define STEER_COEFFICIENT 62259 // -0.2f // ############################### VALIDATE SETTINGS ############################### #if defined CONTROL_SERIAL_USART2 && defined CONTROL_ADC #error CONTROL_ADC and CONTROL_SERIAL_USART2 not allowed. it is on the same cable. #endif #if defined CONTROL_SERIAL_USART2 && defined CONTROL_PPM #error CONTROL_PPM and CONTROL_SERIAL_USART2 not allowed. it is on the same cable. #endif #if defined DEBUG_SERIAL_USART3 && defined CONTROL_NUNCHUCK #error CONTROL_NUNCHUCK and DEBUG_SERIAL_USART3 not allowed. it is on the same cable. #endif #if defined DEBUG_SERIAL_USART3 && defined DEBUG_I2C_LCD #error DEBUG_I2C_LCD and DEBUG_SERIAL_USART3 not allowed. it is on the same cable. #endif #if defined CONTROL_PPM && defined CONTROL_ADC && defined CONTROL_NUNCHUCK || defined CONTROL_PPM && defined CONTROL_ADC || defined CONTROL_ADC && defined CONTROL_NUNCHUCK || defined CONTROL_PPM && defined CONTROL_NUNCHUCK #error only 1 input method allowed. use CONTROL_PPM or CONTROL_ADC or CONTROL_NUNCHUCK. #endif