
Introduction
This manual describes the X-CUBE-MCSDK and X-CUBE-MCSDK-FUL STM32 motor control software development kits
(SDKs) designed for, and to be used with, STM32 microcontrollers. The SDKs contain a software library that implements the
field oriented control (FOC) drive of 3-phase permanent magnet synchronous motors (PMSMs), both surface mounted (SM-
PMSM) and interior (I-PMSM).

The STM32 family of 32-bit Flash microcontrollers is specifically developed for embedded applications. It is based on the
following ARM® Cortex®-M cores: the Cortex®-M0 for the STM32F0, the Cortex®-M3 for the STM32F1 and STM32F2, and the
Cortex®-M4 for the STM32F3, STM32F4 and STM32L4, and the Cortex®-M7 for the STM32F7. These microcontrollers combine
high performance with first-class peripherals that make them suitable for performing three-phase motor FOC.

The PMSM FOC library can be used to quickly evaluate ST microcontrollers, to complete ST application platforms, and to save
time when developing motor control algorithms to be run on ST microcontrollers. It is written in the C language, and implements
the core motor control algorithms, as well as sensor reading/decoding algorithms and sensor-less algorithms for rotor position
reconstruction. This library can be easily configured to make use of the STM32F30x's embedded advanced analog peripherals
(fast comparators and programmable gain amplifiers (PGAs)) for current sensing and protection, thus simplifying application
boards. When deployed with the STM32F103 (Flash memory from 256 Kbytes to 1Mbyte), STM32F303 or STM32F4 devices,
the library allows two motors to be driven simultaneously.

The library can be customized to suit user application parameters (motor, sensors, power stage, control stage, pin-out
assignment) and provides a ready-to-use application programming interface (API). A PC graphical user interface (GUI), the ST
motor control workbench, allows complete and easy customization of the PMSM FOC library. Thanks to this, the user can run a
PMSM motor in a very short time.

A set of ready-to-use examples is provided to explain the use of the motor control API and its most commonly used features.
These projects usually provide a UART interface that allows convenient real-time fine-tuning of the motor control subsystem with
a remote control tool, the STM32 motor control monitor.

The STM32 motor control SDK is delivered as an expansion pack for the STM32 CubeMX tool, and the PMSM FOC library is
based on the STM32 Cube Firmware libraries.

The list of supported STM32 microcontrollers is provided in the release note delivered with the SDK.

 STM32 motor control SDK

UM2392

User manual

UM2392 - Rev 1 - October 2018
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 About this document

1.1 General information
This document applies to Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM2392
About this document

UM2392 - Rev 1 page 2/60

1.2 Terms and abbreviations
Table 1. Terms and abbreviations shows the list of acronyms used in this document:

Table 1. Terms and abbreviations

Acronym Definition

A/D Analog to digital

ADC Analog to digital converter

API Application programming interface

CMSIS Cortex® microcontroller software interface standard

CORDIC Coordinate rotation digital computer

DAC Digital to analog converter

DC Direct current

DMA Direct memory access

DPP Digit per control period

FOC Field oriented control

GUI Graphical user interface

HAL Hardware abstraction layer

ICL Inrush current limiter

ICS Isolated current sensor

IDE Integrated development environment

ISR Interrupt service routine

LL Low layers

MC Motor control

MCU Microcontroller unit

NTC Negative temperature coefficient

NVIC Nested vector interrupts controller

OCP Over current protection

OPAMP Operational amplifier

OS Operating system

PGA Programmable gain amplifier

PID Proportional-integral-derivative (controller)

PLL Phase-locked loop

PM Permanent magnet

PMSM Permanent magnet synchronous motor

PWM Pulse width modulation

RAM Random access memory

SDK Software development kit

SVPWM Space vector pulse width modulation

UI User interface

MC WB Motor control workbench

MC Profiler Motor control profiler

UM2392
Terms and abbreviations

UM2392 - Rev 1 page 3/60

2 STM32 motor control SDK overview

2.1 Package content and installation
The STM32 MC SDK contains the following items:
• STM32 MC firmware
• STM32 MC WB
• STM32 MC Profiler
• The present document
• The reference documentation of the STM32 MC firmware

This package is provided as an executable that installs all the items mentioned above on the user’s computer.
The STM32 MC SDK depends on STM32Cube and STM32CubeMx. Hence, STM32CubeMx version 4.24.0 or
later must be installed before the SDK. More information about STM32CubeMx is available at www.st.com.

Note: STM32CubeMx must be run at least once before the MC SDK can be installed.

2.2 Motor control application workflow
The design of a MC software application that uses the STM32 MC SDK typically starts with the MC WB. With this
tool, users configure the MC SDK according to the characteristics of their motor, their power stage, their control
stage and the chosen STM32 MCU.

Figure 1. Motor control firmware in its environment

Motor control
SDK firmware

Cube MX

MC workbench

Power stageMotorControl stage

IDECube firmwareSTM32 Fxxx

Based on these characteristics, MC WB chooses the appropriate firmware components from the PMSM FOC
library, computes their configuration parameters, produces a STM32CubeMx project file (referred to as the IOC
file from now on, due to its name terminated by the .ioc extension.) and executes STM32CubeMx with this
project.
The result of this execution is the generation of a complete software project that contains the source code and
libraries needed to spin the motors of the application. This software project can be directly opened in the IDE
chosen in the workbench.

UM2392
STM32 motor control SDK overview

UM2392 - Rev 1 page 4/60

http://www.st.com

The code generated by STM32CubeMx configures all the peripherals required to control the application’s motors,
with the parameters provided by the MC WB. This code also initializes the MC firmware subsystem, sets the
STM32 clocks and interrupts handlers so that the motor(s) can be controlled properly.
This software project can then be modified by users to add their own code. Refer to application note for detailed
information on that subject.
With this workflow, the only tool that is visible to users is the STM32 MC WB. This is sufficient for many
applications. If the users need to tune other aspects of their system that impacts the configuration of the STM32
MCU, they can use STM32CubeMx directly: they need to load the project generated by MC WB in CubeMx and
then they can modify what they need and finally generate the project again..
Refer to STM32 MC Workbench section of AN5166 for more details on the interactions between STM32CubeMx
and STM32 motor control workbench.
Figure 2 shows the MC software application design workflow.

Figure 2. STM32 motor control SDK workflow

STM32
MC WB

STM32
CubeMx

*.stmcx *.ioc

Keil / IAR by Keil /
IAR / TrueStudio
software project

In this workflow, STM32 motor control workbench is responsible for computing motor control parameters and
instructing STM32 CubeMx on how to configure the hardware IPs needed for it while STM32 CubeMx is used to
generate the project and the hardware IPs initialization code. In addition, STM32 CubeMx can be used to
configure hardware IPs that are not used for motor control.
The Control stage is at the limit between the both. It is selected and partially configured in the STM32 MC WB
STM32CubeMx manages the rest of the configuration.

2.3 STM32Cube firmware
STM32 MC firmware uses the low layer drivers (LL) of the Cube firmware for interfacing with the peripherals it
needs to access. These LL drivers are built on the standard CMSIS library.
Using LL offers a good compromise between performances and interface stability in time.
In some places of the code of the PMSM FOC library, direct accesses to hardware registers have been used, for
performance reasons.

2.4 STM32 MC firmware
The STM32 MC firmware is the heart of the SDK. It provides all the software components needed to control
PMSM using the FOC strategy, and integrates these components into a MC subsystem. It offers a versatile set of
interfaces that custom applications can use to actually drive motors according to their needs.
Figure 3 shows the architecture of the STM32 an MC firmware.
The firmware consists of the three following functional sets:
• The PMSM FOC Library contains software components that implement the motor control features;
• The UI Library contains software components that deal with the communication between the motor control

firmware subsystem and either the user or an offloaded application;
• The motor control cockpit integrates all these software components into a motor control firmware

subsystem and implements the regulation loops.

UM2392
STM32Cube firmware

UM2392 - Rev 1 page 5/60

Figure 3. STM32 motor control firmware architecture

Motor Control Cockpit

UI Library

Control
API

Dynamic Loops
FOC
Loop

Init. &
Config.

PMSM FOC Library
UI API

MC API

MC Low Level API

MC
Loop

Safety
Loop

Comp. M Comp. N Comp. T Comp. ...Comp. YComp. YComp. X

STM32Cube Low Layer Library
CMSIS

UI
Loop

Application

2.4.1 PMSM FOC Library
The PMSM FOC Library is a collection of software components. Each component implements a feature involved
in MC such as, for instance, the speed and position sensing, the current sensing, or motor control algorithms.
For some features, the library provides several components, each containing a different implementation. This
allows for supporting various hardware configurations in an efficient way. The components to use are then chosen
depending on the characteristics of the user’s application, and are integrated into a motor control firmware
subsystem.

Note: For dual motor applications, each motor may use different components for a given feature.
Figure 4. PMSM FOC Library features delivered as components summarizes the features provided by the PMSM
FOC library as components. The list of most of the components in the PMSM FOC library and their specificities is
described in Section 3.3 Motor control firmware components.

Figure 4. PMSM FOC Library features delivered as components

PMSM FOC Library

Revup

Encoder
Alignment

On the Fly
Startup

Bus Voltage
Sensing

Current Sensing
& PWM Gen.

Temperature
Sensing

Speed & Position
Feedback

Max. Torque per
AmpereFeed ForwardFlux Weakening

PID Regulator Ramp ManagerCircle Limitation

Speed & Torque
Control

Power
Measurement

Inrush Current
Limiter Open Loop FOC

GPIO Driver

UM2392
STM32 MC firmware

UM2392 - Rev 1 page 6/60

2.4.2 User Interface Library
The User Interface Library or UI Library contains software components that deal with the communication
between the MC firmware subsystem and the outside world using a serial port or a DAC. This library is used to
allow the STM32 MC WB to connect to the Application and control it with its Monitor feature. Refer to the STM32
motor control SDK v5.x tools (UM2380) user guide for more information on this feature.

2.4.3 Motor control cockpit integration
The Motor control cockpit integrates the software components into a MC firmware subsystem and implements
the regulation loops. It instantiates, configures and interfaces the firmware components selected in the PMSM
FOC library and in the User Interface Library for the user’s application. The code of the MC Cockpit is generated
by STM32Cube as outlined in Section 2.2 Motor control application workflow according to the characteristics of
the application. Thanks to this generation the code of the cockpit only contains what is needed and is thus easily
readable.

2.5 Examples
The STM32 Motor Control SDK is delivered with a set of ready to spin example applications.

2.6 Documentation
The documentation relevant to using the STM32 Motor Control SDK is distributed as follows:
• User manual, STM32 MC SDK, v5.x:

– Describes the features of the SDK
– Explains the application design workflow and the interaction with PC tools
– Details the motor control API

• STM32 MC firmware reference documentation
– Compressed HTML Help file
– Provides a comprehensive documentation of all the firmware components provided by the SDK
– Delivered with the motor control SDK

• STM32 motor control SDK v5.x tools (UM2380) documentation
– describes the steps and parameters required to customize the library, as shown in the GUI

• STM32Fxxx HAL user manuals
– Compressed HTML Help file
– Provide comprehensive documentations of the STM32Cube firmware libraries
– Available from www.st.com

• Datasheets of supported STM32 MCUs
– Available from www.st.com

• Cortex M0, M3 and M4 technical reference manuals, available from http://infocenter.arm.com

UM2392
Examples

UM2392 - Rev 1 page 7/60

http://www.st.com
http://www.st.com

3 The motor control firmware

3.1 Introduction to PMSM FOC drive
The PMSM FOC software library offers an implementation of the high performance, well-established Field
Oriented Control (FOC) strategy for driving Permanent-Magnet Synchronous Motors (PMSM).
With this approach, it is possible to offer electromagnetic torque (Te) regulation and, to some extent, flux
weakening capability by controlling the two currents iqs and ids , which are mathematical transformations of the
stator currents.
This resembles the favourable condition of a DC motor, where those roles are held by the armature and field
currents.
Therefore, one can say that FOC consists in controlling and orienting stator currents in phase and quadrature with
the rotor flux. This definition makes it clear that a means of measuring stator currents and the rotor angle is
needed.
The structure of the FOC algorithm is represented in Figure 5. Basic FOC algorithm structure, torque control .

Figure 5. Basic FOC algorithm structure, torque control

Rectifier
M

Three Phase Inverter

Space Vector
Modulation
(SVPWM)

va vb vc

Clarke
Transform

iα

iβ
Park

Transform

ia

ib

ic

Rotor Speed
&

Position
Feedback

Reverse Park
Transform &
Circle Limit.

vα

vβ

Current
Reading

PID

PID

vqs

vds
-

+i*qs

i*ds
-

+

θrel

ωr

θrel

AC

• The iqs* and ids* current references can be selected to perform electromagnetic torque and flux control.

• The Space Vector PWM block (SVPWM) implements an advanced modulation method that reduces current
harmonics, thus optimizing DC bus exploitation.

• The current reading block allows the system to measure stator currents correctly, using either cheap shunt
resistors or market-available Hall Sensors or Isolated Current Sensors (ICS).

• The rotor speed/position feedback block allows the system to handle Hall sensor or incremental encoder
signals in order to correctly acquire the rotor angular velocity or position. Moreover, this firmware library
provides sensor less detection of rotor speed/position.

UM2392
The motor control firmware

UM2392 - Rev 1 page 8/60

• The PID controller blocks implement proportional, integral and derivative feedback controllers (current
regulation).

• The Clarke, Park, Reverse Park and Circle limitation blocks implement the mathematical transformations
required by FOC.

3.1.1 Permanent Magnet Motors structure
Two different PMSM constructions are available (see Figure 6. Different Permanent Magnet Motor construction):
• The Surface Mounted PMSM – abbreviated into SM-PMSM – where the magnets are placed on the surface

of the motor;
• The Interior Mounted PMSM – abbreviated into I-PMSM – where the magnets are embedded in the structure

of the rotor.

Figure 6. Different Permanent Magnet Motor construction

q
d

q
d

q
d

SM-PMSM I-PMSM

Inset I-PMSM Buried or radial I-PMSM

SM-PMSMs inherently have an isotropic structure, which means that the direct and quadrature inductances Ld
and Lq are the same. Usually, their mechanical structure allows a wider airgap which, in turn, means lower flux
weakening capability.
On the other hand, I-PMSMs show an anisotropic structure (with Ld < Lq , typically), slight in the case of inset PM
motors, strong in the case of radial PM motors. This peculiar magnetic structure can be exploited to produce a
greater amount of electromagnetic torque. Their fine mechanical structure usually shows a narrow air gap, thus
giving good flux weakening capability.
This firmware library is optimized for use in conjunction with SM-PMSMs and I-PMSMs machines.

UM2392
Introduction to PMSM FOC drive

UM2392 - Rev 1 page 9/60

3.1.2 PMSM fundamental equations

Figure 7. PMSM Reference Frame convention

a

b

c

q

d

ϴr
Φm

The motor voltage and flux linkage equations of a PMSM (SM-PMSM or I-PMSM) are generally expressed as:Vabcs = rsiabcs+ dλabcsdt (1)

λabcs =
LIs+ Lms −Lms2 −Lms2−Lms2 LIs+ Lms −Lms2−Lms2 −Lms2 LIs+ Lms

+ sin θrsin θr − 2π3sin θr+ 2π3
Φm (2)

where:
• rs = stator phase winding resistance

• LIs = stator phase winding leakage inductance

• Lms = stator phase winding magnetizing inductance; in case of an I-PMSM, self and mutual inductances

have a second harmonic component L2s proportional to cos 2θr+ k × 2π3 ,

with k = 0 ± 1 , in addition to the constant component Lms (neglecting higher order harmonics)

• θr = rotor electrical angle

• θm = flux linkage due to permanent magnets

The complexity of these equations is apparent, as the three stator flux linkages are mutually coupled, and as they
are dependent on the rotor position, which is time-varying and a function of the electromagnetic and load torques.
The reference frame theory simplifies the PM motor equations by changing a set of variables that refers the stator
quantities abc (that can be visualized as directed along axes each 120° apart) to q and d components, directed
along orthogonal axes, rotating synchronously with the rotor, and vice versa. The d “direct” axis is aligned with the
rotor flux, while the q “quadrature” axis aims at 90 degrees in the positive rolling direction.
The motor voltage and flux equations are simplified to:vqs = rsiqs+ dλqsdt + ωrλdsvds = rdsiqs+ dλdsdt − ωrλqs (3)

λqs = Lqsiqsλds = Lqsiqs+Φm (4)

For an SM-PMSM, the inductances of the d and q axis circuits are the same (refer to Section 3.1.1 Permanent
Magnet Motors structure), that is: Ls = Lqs = Lds = 32Lms (5)

UM2392
Introduction to PMSM FOC drive

UM2392 - Rev 1 page 10/60

On the other hand, I-PMSMs show a salient magnetic structure; thus, their inductances can be written as:Lqs = LIs+ 32 Lms+ L2sLds = Lis+ 32 Lms − L2s (6)

SM-PMSM field-oriented control (FOC)
The equations below describe the electromagnetic torque of an SM-PMSM:Te = 32p λdsiqs − λqsids = 32p Lsidsiqs − Lsiqsids + Φmiqs (7)

Te = 32p Φmiqs (8)

The last equation makes it clear that the quadrature current component iqs has linear control on the torque
generation, whereas the current component ids has no effect on it (as mentioned above, these equations are valid
for SM-PMSMs).
Therefore, if Is is the motor rated current, then its maximum torque is produced for iqs = Is and ids = 0 (in fact,Is = iqs2 + ids2). In any case, it is clear that, when using an SM-PMSM, the torque/current ratio is optimized by
letting ids = 0 . This choice corresponds to the MTPA (maximum-torque-per-ampere) control for isotropic motors.

On the other hand, the magnetic flux can be weakened by acting on the direct axis current ids ; this extends the
achievable speed range, but at the cost of a decrease in maximum quadrature current iqs , and hence in the
electromagnetic torque supplied to the load.
In conclusion, by regulating the motor currents through their components iqs and ids , FOC manages to regulate
the PMSM torque and flux. Current regulation is achieved by means of what is usually called a “synchronous
frame CR-PWM”.

3.1.3 PID regulator theoretical background
The regulators implemented for Torque, Flux and Speed are actually Proportional Integral Derivative (PID)
regulators. PID regulator theory and tuning methods are subjects which have been extensively discussed in
technical literature. This section provides a basic reminder of the theory.
PID regulators are useful to maintain a level of torque, flux or speed according to a desired target. Indeed, both
the torque and the flux are a function of the rotor position. FOC needs to regulate torque and flux to maximize
system efficiency. In addition, the torque is also a function of the rotor speed. Hence, performing speed regulation
results into regulating the torque.
The following is the PID general equation. it is used in the general PID regulator:r tk = Kp × ϵ tk + Ki × ∑j = 0k ϵ tj +Kd × ϵ tk − ϵ tk − 1 (9)

where:
• ϵ tk is the error of the system observed at time t = tk , while ϵ tk − 1 is the error of the system at timet = tk− Tsampling
• Kp is the proportional coefficient.

• Ki is the integral coefficient.

• Kd is the differential coefficient.

• r tk is the reference to apply as output of the PID regulator

In a motor control application, the derivative term can be disabled. This is indeed the case in the STM32 Motor
Control SDK although both PID regulator implantations are provided.

3.1.4 Regulator sampling time setting
The sampling period Tsampling needs to be modified to adjust the regulation bandwidth. As an accumulative term
(the integral term) is used in the algorithm, increasing the loop time decreases its effects (accumulation is slower
and the integral action on the output is delayed). Inversely, decreasing the loop time increases its effects
(accumulation is faster and the integral action on the output is increased). This is why this parameter has to be
adjusted prior to setting up any coefficient of the PID regulator.

UM2392
Introduction to PMSM FOC drive

UM2392 - Rev 1 page 11/60

In order to keep the CPU load as low as possible and as induced from Eq. (9), the sampling time is directly part of
the integral coefficient, thus avoiding an extra multiplication.Eq. (10) and Eq. (11) show the link between the time
domain and the discrete system.

Time domain: r t = Kp × ϵ t + Ki ×∫0tϵ t ⅆt+ Kd × ⅆⅆtϵ t (10)

Discrete domain: r tk = Kp × ϵ tk + Ki × ∑j = 0k ϵ tj dt+ Kd × ϵ tk − ϵ tk − 1 (11)

In theory, the higher the sampling rate, the better the regulation. In practice, one must keep in mind that:
• The related CPU load grows accordingly.
• For speed regulation, there is absolutely no need to have a sampling time lower than the refresh rate of the

speed information fed back by the external sensors; this becomes especially true when Hall sensors are
used while driving the motor at low speed.

3.1.5 A priori determination of flux and torque current PI gains
This section provides a criterion for the computation of the initial values of the torque/flux PI parameters (Ki andKp). This criterion is also used by the STM32 MC WB in its computation.

To calculate these starting values, it is required to know the electrical characteristics of the motor (stator
resistance Rs and inductance Ls) and the electrical characteristics of the hardware (shunt resistor Rsℎunt , current
sense amplification network AOp and the direct current bus voltage VBusDC).

The derivative action of the controller is not considered using this method.
Figure 8. Block diagram of a PI controller shows the PI controller block diagram used for torque or flux regulation.

Figure 8. Block diagram of a PI controller

Target
current Kp

Ki 1/S

+

-

+

+

Measured
current

For this analysis, the motor electrical characteristics are assumed to be isotropic (in other words, it is SM-PMSM
motor) with respect to the q and d axes. It is assumed that the torque and flux regulators have the same starting
value of Kp and the same Ki value.

Figure 9. Motor control software subsystem overview shows the closed loop system in which the motor phase is
modelled using the resistor-inductance equivalent circuit in the “locked-rotor” condition.
Block “A” is the proportionality constant between the software variable storing the voltage command (expressed in
digit) and the real voltage applied to the motor phase (expressed in Volt). Likewise, block “B” is the proportionality
constant between the real current (expressed in Ampere) and the software variable storing the phase current
(expressed in digit).
The transfer functions of the two blocks “A” and “B” are expressed as:

Time domain: A = VBusDC216 (12)

and

Time domain: B = RSℎuntAop2163.3 (13)

By inserting
KpKp = LrRs , it is possible to perform pole-zero cancellation.

UM2392
Introduction to PMSM FOC drive

UM2392 - Rev 1 page 12/60

3.2 Motor control firmware subsystem
The motor control firmware subsystem is the firmware library that results from the configuration and generation of
a firmware project with the STM32 MC WB / STM32CubeMx pair. Users then build their final application on top of
this subsystem, adding their own code that uses one of the provided APIs (see below).
Figure 9. Motor control software subsystem overview provides an overview of this subsystem showing optional
and mandatory functional blocks as well as how they interact with one another. Note that only the most important
blocks and interactions are shown for the sake of clarity. This figure highlights three sets of functional blocks.
The FOC loop is the core of the FOC algorithm. Its aim is to compute the phase voltages and produce the
resulting SVPWM duty cycles to apply to the transistors driving the motor’s phases. It executes all the
mathematical transforms needed to go from the measured ia, ib, ic phase currents down to the iq, id currents
and then back from the vq, vd voltage up to PWM duty cycles. In the middle, iq, id values confronted with the
reference vq, vd by PID regulators that output the pair in return (see Figure 5. Basic FOC algorithm structure,
torque control). The FOC loop is executed at a high rate, the PWM frequency.

Figure 9. Motor control software subsystem overview

AC M

Clarke, Park
Circle limitation
Park-1, SVPWM

PID

Current Sensing

1Sh 3Sh ICS

Speed & Position Feedback

PLL CORDIC

HALL ENCODER

Shall be one of:

Shall be one of:

Feed
Forward

Flux
Weaken.MTPA

Speed &
Torque
Regul.

ICL

Over
Voltage
Protect.

Under
Voltage
Protect.

Over
Current
Protect.

Over
Heating
Protect.

Safety
routines

Bus
Voltage
Sensing

Brake

Rectifier

Three Phase Inverter

Rev up
Control Open loop

FOC
Appli.

UI

Legend:
Optional Component

Mandatory Component

Reference computation loop FOC loop

Safety loop

The purpose of the Reference computation loop, as its name suggests, is to compute the iq*, id* references
based on targets coming from the application. Usually, the application provides a reference expressed in a way
that matches its needs: a speed or a torque reference or ramp. The reference computation loop first converts the
application target into an initial iq*, id* reference which is then optionally passed through one or several
algorithm(s) that aim(s) at optimizing the motor drive: Maximum Torque Per Ampere, Flux Weakening, or Feed

UM2392
Motor control firmware subsystem

UM2392 - Rev 1 page 13/60

Forward. Then, the resulting iq*, id* reference is finally used by the FOC loop. This process is in force when the
motor control subsystem is executing in closed loop mode.
However, this is not the only operating mode. Indeed, depending on the chosen Speed and Position Feedback
technology, a rev up phase may be needed that will take over that process until the rotor Position estimation is
judged reliable. This is the purpose of the Rev-up Control component.
In addition, some applications may require that the motor control stays in open loop. This case is handled by the
Open Loop Control component that is executed in lieu of the normal regulation process.
All these cases fall in the basket of the Reference computation loop that is executed at a medium rate, typically on
the SysTick interrupt.
The last set of functional blocks is the Safety loop. This set is called a loop because it consists in functions that
gets executed on a periodic basis. They all deal with features that aim at reacting to conditions that may endanger
the system from a hardware point of view: Over and Under Voltage protection, Over Heating protection and Over
Current protection. In the case of Over Current protection, the STM32 MC firmware is designed to exploit
hardware mechanisms implemented in the STM32 MCUs such as the Timer Break input that accelerate the
system reaction to over current situation. The latest item, the Safety Routines is, for the time being, only a
provision for inserting user defined custom code that would add functional safety to the motor control subsystem.
It will be extended in future revisions of the STM32 MC SDK.
The Safety loop is executed at the same rate as the Reference computation loop – that is at a medium rate,
usually with the SysTick interrupt.
About the execution rates given in this section, a more complete discussion is available in Section 3.4.2 Tasks of
the motor control subsystem.

3.3 Motor control firmware components
Most of the motor control firmware is organized as a set of software components to the exception of the inner
FOC loop for which a decomposition in components was judged inadequate.
A component in a self-contained software unit that defines:
• A structure with the data needed to fulfil the feature the component is designed to provide
• A set of functions operating on instances of the structure and that implement that feature

The data placed in the structure of a component are the parameters that characterize this component and that
tune its behavior. They fully describe the state of the component. In the motor control firmware, a type is defined
to hold these data together. Variables of this type are used as handles on instances of the component.

Figure 10. A component with its handle and its functions

FTR
FTR_Handle_t

· Field1
· Field2
· Field3
· ...

FTR_Init(...)

FTR_FuncX(...)

FTR_FuncY(...)

The way this principle is used is very straightforward. Where a feature is needed, the component that matches
this feature is selected and a variable of the structure’s type is defined. The variable is then initialized with the
feature’s parameters as defined for the application. This is done when the motor control firmware subsystem is
initialized by the MC_boot() function.
Finally, during the operation of the motor control firmware subsystem, the functions defined for the component are
called where and when needed to benefit from the feature it provides. These functions provide the component’s
feature. To perform their task, they expect a pointer on a handle of the component’s structure as first argument so
that they have access to the state and the settings of the instance of the component they work for.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 14/60

Figure 11. PMSM FOC Library features delivered as components

PMSM FOC Library
Revup

Encoder
Alignment

On the Fly
Startup

Bus Voltage
Sensing

Current Sensing
& PWM Gen.

Temperature
Sensing

Speed & Position
Feedback

Max. Torque per
AmpereFeed ForwardFlux Weakening

PID Regulator Ramp ManagerCircle Limitation

Speed & Torque
Control

Power
Measurement

Inrush Current
Limiter Open Loop FOC

GPIO Driver

Thanks to this decomposition in Components, a given feature can be instantiated multiple times which is very
helpful in a Dual Drive application (and also in Single Drive: for instance, the PID regulator component is used
several times for each motor.).
The notion of component makes it easy to offer several implementations of a given feature. For such cases, a
generic component is defined for the feature. Its handle contains the data that are common to the feature
whatever its actual implementation is, and its functions operate on these data. In addition, the prototypes of the
functions that each component implementing the feature need to provide are defined. These functions are the
interface of the components.
Then, these implementing components reuse and extend the handle of the generic component into their own and
implement the functions needed to fulfill the feature. This allows for a simplified integration and an easy
replacement of an implementation by another.

Figure 12. Relationship between generic and implementing components

FTR Generic
FTR_Handle_t

· Field1
· Field2
· Field3
· ...

FTR_Init(...)

FTR_FuncX(...)

FTR_FuncY(...)

FTRIMPL1
FTRIMPLT1_Handle_t

· _Super
· Field4
· Field5
· ...

FTRIMPL1_Init(...)

FTRIMPL1_FuncZ(...)

FTRIMPL1_FuncI(...)

FTRIMPL2
FTRIMPL2_Handle_t

· _Super
· Field6
· Field7
· ...

FTRIMPL2_Init(...)

FTRIMPL2_FuncT(...)

FTRIMPL2_FuncI(...)

Prototype: FuncI(...)

UM2392
Motor control firmware components

UM2392 - Rev 1 page 15/60

An Example of this situation is the set of Speed and Position Feedback components. A generic component is
defined, represented by the SpeednPosFdbk_Handle_t handle structure, defined in the speed_pos_fdbk.h file.
The handle of this generic component only contains the data that are purely related to the speed and the position
of the motor’s rotor such as the current mechanical and electrical angles, the conversion factor between them and
the limits within which the feature is to be used. And its functions are only about setting and getting these data.
Four actual implementations are provided, one that uses a quadrature encoder to get the speed and the position
of the rotor, one that uses Hall Effect sensors and two that implement the feature using state observer based
algorithms. Each of these four implementations define their own handle that extends SpeednPosFdbk_Handle_t
and each define interface functions based on the same prototypes.
The following sections present an overview of all the components offered by the STM32 MC SDK. For a complete
description, refer to the STM32 MC firmware reference manual.

3.3.1 Current sensing and PWM generation components
Features overview
The Current Sensing and PWM components are responsible for two key features of a FOC subsystem:
• Measuring the current that flows into three phases of the motor;
• Applying the desired voltage on these three phases.

In the STM32 MC firmware these two features are grouped in a single software component because the instants
when the currents are to be measured must be synchronized with the SVPWM that applies the voltages. To that
end, the STM32 MC firmware uses Timer peripherals that can trigger ADC conversions. The ADC peripherals are
used to measure the currents while the Timers are used to generate the PWM signals that drive the voltages
applied on the phases and to trigger the measurement of the ADC at the right time. This mechanism is described
in more details below.
Concretely, the main task of these components is to compute, for each PWM period, the PWM duty cycles
required to apply the reference voltage on the motor phases and the instant when to trigger the ADC for capturing
currents. This task begins when the motor is started and ends when it is stopped.
In addition, these components also play a role in other matters such as the boot capacitor charging which requires
switching the low sides transistors on, and the over current protection.
Each PWM and Current Feedback implementation handles the Timer and ADC interrupts that are relevant to its
operation. It expects these interrupts to be configured with a given priority level and it defines its own functions to
handles them. The Application shall not tamper neither with the priorities of these interrupts or with the order in
which they are served in the interrupt handler. See Section 3.4.3 Interrupts and Real Time aspects.
Available Implementations and specificities
The PMSM FOC Library provides all the components needed for supporting three-shunt, single-shunt, and ICS
topologies. Refer to Table 2 for a list of these components. The selection of the component that matches the
topology actually in use by the application is performed through the STM32 MC WB.
All these implementations are built on a generic PWM and Current Feedback component that they extend and
that provides the functions and data that are common to all of them. This base component cannot be used as is
since it does not provide a complete implementation of the features. Rather, its handle structure
(PWMC_Handle_t) is reused by all the PWM and Current Feedback specific implementations.
The functions, that the generic PWM and Current Feedback component provides, form the API of the PWM and
Current feedback feature. Calling those results in calling functions of the component that actually implement the
feature. Hence, the MC Cockpit calls the functions of the generic PWM and Current Feedback component instead
of the ones defined by the chosen implementation. This way of using components is specific to the current
sensing and PWM generation components. Other sets of components like the Speed and Position Feedback ones
do not work this way. Refer to the Reference User Manual for more information.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 16/60

Table 2. PWM and current feedback components

Component Description

R1 F0xx PWM and Current Feedback For applications using a Single Shunt current sensing topology and an
STM32F0 MCU.

R3 F0xx PWM and Current Feedback For applications using a Three-Shunt current sensing topology and an
STM32F0 MCU.

R1 HD2 PWM and Current Feedback
For applications using a Single Shunt resistor current sensing topology and
an STM32F103 High Density MCU (STM32F103xC, STM32F103xD and
STM32F103xE).

R1 VL1 PWM and Current Feedback
For applications using a Single Shunt resistor current sensing topology and
an STM32F100 Value Line MCU (STM32F100x4, STM32F100x6,
STM32F100x8 and STM32F100xB).

R3 HD2 PWM and Current Feedback
For applications using a Three-Shunt resistors current sensing topology
and an STM32F103 High Density MCU (STM32F103xC, STM32F103xD
and STM32F103xE).

R3 LM1 PWM and Current Feedback

For applications using a Three-Shunt resistors current sensing topology
and an STM32F103 Low and Medium Density MCU (STM32F103x4,
STM32F103x6, STM32F103x8 an

STM32F103xB).

ICS HD2 PWM and Current Feedback
For applications using an Insulated Current Sensors topology and an
STM32F103 High Density MCU (STM32F103xC, STM32F103xD and
STM32F103xE).

ICS LM1 PWM and Current Feedback

For applications using an Insulated Current Sensors topology and an
STM32F103 Low and Medium Density MCU (STM32F103x4,
STM32F103x6, STM32F103x8 and

STM32F103xB).

R1 F30x PWM and Current Feedback For applications using a Single Shunt resistor current sensing topology and
an STM32F3 MCU.

R3 1 ADC F30x PWM and Current Feedback
For applications using a Three-Shunt resistor current sensing topology and
an STM32F3 MCU. This component uses three channels of a single ADC
for current measurement.

R3 2 ADCs F30x PWM and Current Feedback

For applications using a Three-Shunt resistor current sensing topology and
an STM32F3 MCU. This component uses four channels on 2 ADCs for
measuring the currents of one motor. It is designed to be used in dual drive
applications where two instances of this component share the same 2 ADC
peripherals. It can also use the internal PGA embedded in some STM32F3
MCUs.

R3 4 ADCs F30x PWM and Current Feedback

For applications using a Three-Shunt resistor current sensing topology and
an STM32F3 MCU. This component uses four channels on 2 ADCs for
measuring the currents of one motor. It is intended to be used in dual drive
applications where each instances of this component use 2 ADC
peripherals each, leading to a total of 4 ADCs. It can also use the internal
PGA embedded in some STM32F3 MCUs.

ICS F30x PWM and Current Feedback For applications using an Insulated Current Sensors topology and an
STM32F3 MCU.

R1 F4xx PWM and Current Feedback For applications using a Single Shunt resistor current sensing topology and
an STM32F4 MCU.

R3 F4xx PWM and Current Feedback For applications using a Three-Shunt resistor current sensing topology and
an STM32F4 MCU.

ICS F4xx PWM and Current Feedback For applications using an Insulated Current Sensors topology and an
STM32F4 MCU.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 17/60

Access to the Current Feedback ADCs by the application
PWM and Current Feedback components take full ownership of the ADC peripherals they use. The application
can use the ADC channels left free by the motor control subsystem, but it should not interface these channels
directly. PWM and Current Feedback components export a dedicated function PWMC_ExecRegularConv that is
used by the MC API to provide access to these channels. However, this function is not for Application use.
Instead, the Application shall use the functions of the Regular Conversion Manager (RCM) component. Refer to
the Reference Documentation of the MC SDK for a complete description.
Current sampling in three-shunt topology using two A/D converters

Figure 13. Three-shunt topology hardware architecture

ADC

G
at

e
Dr

iv
er

+
-

OpAmp + Offset

+
-

OpAmp + Offset

+
-

OpAmp + Offset

500mV
3.3V

OpAmp + Offset

Voltage on R Shunt Voltage to be converted

The three currents I1, I2, and I3 flowing through a three-phase system follow the mathematical relation:I1 + I2 + I3 = 0 (14)

For this reason, to reconstruct the currents flowing through a generic three-phase load, it is sufficient to sample
only two out of the three currents while the third one can be computed by using the above relation.
The flexibility of the STM32 A/D converter makes it possible to synchronously sample the two A/D conversions
needed for reconstructing the current flowing through the motor. The ADC can also be used to synchronize the
current sampling point with the PWM output using the external triggering capability of the peripheral. Owing to
this, current conversions can be performed at any given time during the PWM period. To do this, the control
algorithm uses the fourth PWM channel of TIM1 to synchronize the start of the conversions.
Figure 14. PWM and ADC Synchronization shows the synchronization strategy between the TIM1 PWM output
and the ADC. The A/D converter peripheral is configured so that it is triggered by the rising edge of TIM1_CH4.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 18/60

Figure 14. PWM and ADC Synchronization

TIM1_CH3

TIM1_CH4

ADC Start

TIM1_CH1

TIM1_CH2

Sampling point before counter overflow

TIM1_CH3

TIM1_CH4

ADC Start

TIM1_CH1

TIM1_CH2

Sampling point after counter overflow

Counter overflow

OCR 3

OCR 2

OCR 1

OCR 4

OCR 3

OCR 2

OCR 1

OCR 4

In this way, supposing that the sampling point must be set before the counter overflow, that is, when the TIM1
counter value matches the OCR4 register value during the up-counting, the A/D conversions for current sampling
are started. If the sampling point must be set after the counter overflow, the PWM 4 output has to be inverted by
modifying the CC4P bit in the TIM1_CCER register. Thus, when the TIM1 counter matches the OCR4 register
value during the down-counting, the A/D samplings are started.
After execution of the FOC algorithm, the value to be loaded into the OCR4 register is calculated to set the
sampling point for the next PWM period, and the A/D converter is configured to sample the correct channels.

Table 3. Three-shunt current reading, used resources (single drive, F103 LD/MD)

Adv. timer DMA ISR ADC master ADC slave Note

TIM1
DMA1_CH1

DMA1_CH5
None ADC1 ADC2

DMA is used to enable ADC injected
conversion external trigger.

Disabling is performed by software.

Table 4. Three-shunt current reading, used resources (Dual drive,F103 HD, F2x, F4x)

Adv. timer DMA ISR ADC Note

TIM1 DMA1_CH1 TIM1_UP
ADC1

ADC2

Used by first or second motor configured in three-shunt,
according to user selection. ADC is used in time sharing.
Trigger selection is performed in the TIM_UP ISR.

TIM8 None TIM8_UP
ADC1

ADC2

Used by first or second motor configured in three-shunt,
according to user selection. ADC is used in time sharing.
Trigger selection is performed in the TIM_UP ISR.

Refer to section Current sensing and PWM generation components, for a STM32F30x microcontroller
configuration.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 19/60

Current sampling in three-shunt topology using one A/D converter

Figure 15. Three-shunt topology hardware architecture

Unlike the case of current sampling with two ADCs, in the case of single ADC it is not possible to synchronously
sample the two phase current A/D conversions, needed for reconstructing the current flowing through the motor,
but they can be performed only in sequence mode.
The ADC can be used to synchronize the current sampling point with the PWM output using the external
triggering capability of the peripheral. Owing to this, current conversion sequence can be performed at any given
time during the PWM period.
To do this, the control algorithm uses the fourth PWM channel of TIM1 to synchronize the start of the conversion
sequence.

Figure 16. PWM and ADC synchronization ADC rising edge external trigger and Figure 17. PWM and ADC
synchronization ADC falling edge external trigger show the synchronization strategy between the TIM1 PWM
output and the ADC.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 20/60

Figure 16. PWM and ADC synchronization ADC rising edge external trigger

Figure 17. PWM and ADC synchronization ADC falling edge external trigger

Sampling is on falling edge of PWM4

If CCR A + delay > PWM_VALUE, it is possible to set the CCR 4 equal to CCR A plus the
delay and set a falling ADC external trigger

ADC Start

DT+TN

PWM updatePWM update

PWM_VALUE

CCR 4

CCR A

PWM A

PWM 4

In this way, supposing that the sampling point must be set before the counter overflow, that is, when the TIM1
counter value matches the OCR4 register value during the up counting, the A/D conversion sequence for current
sampling are started. If the sampling point must be set after the counter overflow, it is necessary to set a falling
edge ADC external trigger. Thus, when TIM1 counter matches the OCR4 register value during the down counting,
the A/D sampling is started.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 21/60

After execution of the FOC algorithm, the value to be loaded into the OCR4 register is calculated to set the
sampling point for the next PWM period, and the A/D converter is configured to sample the correct channels.

Table 5. Three-shunt current reading, used resources, single drive, STM32F302x6, STM32F302x8

Adv. Timer ISR ADC Note

TIM1
ADC1_IRQn

TIM1_BRK_TIM15_IRQN
ADC1

The dual drive mode and the internal

PGA are not available

Table 6. Three-shunt current reading, used resources, single drive, STM32F030x8

Adv. Timer ISR ADC Note

TIM1
DMA1_Channel1_IRQn

TIM1_BRK_UP_COM_IRQN
ADC1

The dual drive mode and the internal

PGA are not available

The FOC starts after DMA1_Channel1 Transmission is complete (dual sampling). The DMA is used to manage
the A/D conversion sequence since the STM32F0x ADC doesn’t support the injected conversion type but only the
regular conversion type.
Current Sampling in Single-Shunt topology
Figure 18. Single-shunt hardware architecture illustrates the single-shunt topology hardware architecture.

Figure 18. Single-shunt hardware architecture

UM2392
Motor control firmware components

UM2392 - Rev 1 page 22/60

It is possible to demonstrate that, for each configuration of the low-side switches, the current through the shunt
resistor is given in Table 7. Current through the shunt resistor. T4, T5 and T6 assume the complementary values
of T1, T2 and T3, respectively.
In Table 7. Current through the shunt resistor, value “0” means that the switch is open whereas value “1” means
that the switch is closed.

Table 7. Current through the shunt resistor

T1 T2 T3 IShunt

0 0 0 0

0 1 1 iA

0 0 1 -iC

1 0 1 iB

1 0 0 -iA

1 1 0 iC

0 1 0 -iB

1 1 1 0

Using the centered-aligned pattern, each PWM period is subdivided into 7 sub periods (see Figure 19. Single
shunt current reading). During three sub periods (I, IV, VII), the current through the shunt resistor is zero. During
the other sub periods, the current through the shunt resistor is symmetrical with respect to the center of the PWM.
For the conditions showed in Figure 19. Single shunt current reading, there are two pairs:
• sub periods II and VI, during which iShunt is equal to –iC
• sub periods III and V, during which iShunt is equal to iA

Under these conditions, it is possible to reconstruct the three-phase current through the motor from the sampled
values:
• iA is iShunt measured during sub period III or V
• iC is -iShunt measured during sub period II or VI
• iB = –iA – iC

Figure 19. Single shunt current reading

I II III

iA

IV V VI VII

T1

T2

T3

iShunt

iA

-iC -iC

UM2392
Motor control firmware components

UM2392 - Rev 1 page 23/60

If the stator-voltage vector lies in the boundary space between two space vector sectors, two out of the three duty
cycles will assume approximately the same value. In this case, the seven sub periods are reduced to five sub
periods.
Under these conditions, only one current can be sampled, the other two cannot be reconstructed. This means that
it is not possible to sense both currents during the same PWM period, when the imposed voltage demand vector
falls in the gray area of the space vector diagram represented in Figure 20. Boundary between two space vector
sectors.

Figure 20. Boundary between two space vector sectors

Similarly, for a low modulation index, the three duty cycles assume approximately the same value. In this case,
the seven sub-periods are reduced to three sub-periods. During all three sub-periods, the current through the
shunt resistor is zero. This means that it is not possible to sense any current when the imposed voltage vector
falls in the gray area of the space vector diagram represented in Figure 21. Low modulation index.

Figure 21. Low modulation index

iShunt

T3

T2

T1

I II III

Definition of the noise parameter and boundary zoneTRise is the time required for the data to become stable in the ADC channel after the power device has been
switched on or off.
The duration of the ADC sampling is called the sampling time.TMIN is the minimum time required to perform the sampling, and:TMin = TRise+ sampling time + dead time (15)DMIN is the value of TMIN expressed in duty cycle percent. It is related to the PWM frequency FPWM as follows:DMIN = 100 × TMIN × FPWM (16)

UM2392
Motor control firmware components

UM2392 - Rev 1 page 24/60

Figure 22. Definition of noise parameters

T5 switched off T2 switched on

End of noise, start of sampling

End of sampling, start of conversion

Sampling time

Dead
time

The voltage-demand vector lies in a region called the Regular region when the three duty cycles (calculated by
space vector modulation) inside a PWM pattern differ from each other by more than DMIN . This is represented in
Figure 22. Definition of noise parameters.

Figure 23. Regular region

The voltage-demand vector lies in a region called Boundary 1 when two duty cycles differ from each other by less
than DMIN , and the third is greater than the other two and differs from them by more than DMIN . This is
represented in Figure 24. Boundary 1.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 25/60

Figure 24. Boundary 1

The voltage-demand vector lies in a region called Boundary 2 when two duty cycles differ from each other by less
than DMIN , and the third is smaller than the other two and differs from them by more than DMIN . This is
represented inFigure 25. Boundary 2.

Figure 25. Boundary 2

The voltage-demand vector lies in a region called Boundary 3 when the three PWM signals differ from each other
by less than DMIN . This is represented in Figure 26. Boundary 3.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 26/60

Figure 26. Boundary 3

If the voltage-demand vector lies in Boundary 1 or Boundary 2 region, a distortion must be introduced in the
related PWM signal phases to sample the motor phase current.
An ST patented technique for current sampling in the “Boundary” regions has been implemented in the firmware.
Please contact your nearest ST sales office or support team for further information about this technique.

Table 8. Single-shunt current reading, used resources (single drive, F103/F100 LD/MD, F0x)

Adv. Timer Aux. timer DMA ISR ADC Note

TIM1 TIM3 (CH4)

DMA1_CH1

DMA1_CH3

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC1

F103/F100 LD device configuration,
RC DAC cannot be used; ADC1 is
used for general purpose conversions

TIM1 TIM4 (CH3)

DMA1_CH1

DMA1_CH5

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC1

F103/F100 MD device configuration;
ADC1 is used for general purpose
conversions

TIM1 TIM15 (CH1)

DMA1_CH2

DMA1_CH5

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC1 F051x device configuration

TIM1 TIM3 (CH4)

DMA1_CH2

DMA1_CH3

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC1 F050x/F030x device configuration

Table 9. Single-shunt current reading, used resources (single or dual drive, F103HD

Adv. timer Aux. timer DMA ISR ADC Note

TIM1 TIM5 (CH4)

DMA1_CH1

DMA2_CH1

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC3

Option1: used by the first motor
configured in single-shunt, or the
second motor when the first is not
single-shunt; ADC1 is used for general
purpose conversions

TIM8 TIM4 (CH3)

DMA1_CH1

DMA1_CH5

DMA2_CH2

TIM8_UP
DMA2_CH2_TC

(FOC rate > 1)
ADC1

Option1: used by the second motor
configured in single-shunt when the
first motor is also configured in single-
shunt.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 27/60

Adv. timer Aux. timer DMA ISR ADC Note

TIM8 TIM5 (CH4)

DMA1_CH1

DMA2_CH1

DMA2_CH2

TIM8_UP
DMA2_CH2_TC

(FOC rate > 1)
ADC3

Option2: used by the first motor
configured in single-shunt or by the
second motor when the first is not
single-shunt; ADC1 is used for general
purpose conversions

TIM1 TIM4 (CH3)

DMA1_CH1

DMA1_CH5

DMA1_CH4

TIM1_UP
DMA1_CH4_TC

(FOC rate > 1)
ADC1

Option2: used by the second motor
configured in single-shunt when the
first motor is also configured in single-
shunt.

Table 10. Single-shunt current reading, used resources, single or dual drive, STM32F4xx

Adv

Timer

Aux

Timer
DMA ISR ADC Note

TIM1 TIM5 (ch4)

DMA1, stream1,
ch6;

DMA2, stream4,
ch6

TIM1_UP;
DMA2_stream4_
TC (FOC rate>1)

ADC3

Option 1: used by first motor when it is
configured in single shunt, or by

second motor when the first one isn’t
in single shunt. ADVC1 used for

general purpose conversions

TIM8 TIM4(ch2)

DMA1,
stream3,ch2;

DMA2, stream7,
ch7

TIM8_UP;
DMA2_stream7_
TC (FOC rate>1)

ADC1

Option 1: used by second motor when
it is configured in single shunt and

when first motor isn’t in single shunt.
ADVC1 used for general purpose

conversions

TIM8 TIM5(ch4)

DMA1,
stream1,ch6;

DMA2, stream7,
ch7

TIM8_UP;
DMA2_stream7_
TC (FOC rate>1)

ADC3

Option 2: used by first motor when it is
configured in single shunt, or by

second motor when the first one isn’t
in single shunt. ADVC1 used for

general purpose conversions

TIM1 TIM4(ch2)

DMA1,
stream3,ch2;

DMA2, stream4,
ch6

TIM1_UP;
DMA2_stream4_
TC (FOC rate>1)

ADC1

Option 2: used by second motor when
it is configured in single shunt and
when first motor is also in single
shunt. ADVC1 used for general
purpose conversions

Using F103HD, or F4xx in single drive, it is possible to choose between option 1 and option 2 (See
Table 9. Single-shunt current reading, used resources (single or dual drive, F103HD and Table 10. Single-shunt
current reading, used resources, single or dual drive, STM32F4xx). The resources are allocated or saved
accordingly.
Please refer to section Current sensing and PWM generation components for STM32F30x microcontroller
configuration.
Current sampling in isolated current sensor topology
Figure 27. ICS hardware architecture illustrates the ICS topology hardware architecture.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 28/60

Figure 27. ICS hardware architecture

Conditioning Network

Voltage to be coveredVoltage from ICS

Conditioning Conditioning

ICS must generate a positive
voltage when current goes
out of the inverter.

XXXmV
3.3V

To reconstruct the currents flowing through a generic three-phase load, it is therefore sufficient to sample only two
out of the three currents, while the third is calculated using the above relationship.
The flexibility of the A/D converter trigger makes it possible to synchronize the two A/D conversions necessary for
reconstructing the stator currents flowing through the motor with the PWM reload register updates. This is
important because, as shown in Figure 28. Stator currents sampling in ICS configuration, it is precisely during the
counter overflow and underflow that the average level of current is equal to the sampled current.
Refer to the microcontroller reference manual to learn more about A/D conversion triggering.

Figure 28. Stator currents sampling in ICS configuration

PWM Counter

Compare A

Compare B

Low side A

Low side B

Phase current

TIM1 update,
ADC trigger

TIM1 update,
ADC trigger

Average current

UM2392
Motor control firmware components

UM2392 - Rev 1 page 29/60

Table 11. ICS current reading, used resources (single drive, F103 LD/MD)

Adv. timer DMA ISR ADC master ADC slave Note

TIM1 DMA1_CH5 None ADC1 ADC2
DMA is used to enable ADC injected
conversion external trigger.

Disabling is performed by software.

Table 12. ICS current reading, used resources (single or dual drive, F103 HD, F4xx)

Adv. timer DMA ISR ADC Note

TIM1 None TIM1_UP
ADC1

ADC2

Used by the first or second motors configured in
three-shunt, depending on the user selection. ADC
is used in time sharing. Trigger selection is
performed in the TIM_UP ISR.

TIM8 None TIM8_UP
ADC1

ADC2

Used by the first or second motor configured in
three-shunt, depending on the user selection. ADC
is used in time sharing. Trigger selection is
performed in the TIM_UP ISR.

Current sensing and protection on embedded PGA
1. Introduction

The STM32F302xB/C or STM32F303xB/C microcontrollers feature an enhanced set of peripherals including
comparators, PGAs, DACs and high-speed ADCs.
Figure 29. Current sensing network and overcurrent protection with STM32F302/303 shows a current
sensing and overcurrent protection scheme that can be implemented using the internal resources of the
STM32F302/303. The voltage drop on the shunt resistor, due to the motor phase current, can be either
positive or negative, an offset is set by R1 and R2. The signal is linked to a microcontroller input pin that has
both functionality of amplifier and comparator non-inverting.

Figure 29. Current sensing network and overcurrent protection with STM32F302/303

RShunt

R1

R2

ADC

+VDD

OP AMP

iA

6 PWM

COMP

V-
TIM 1,8

BRK2

STM32F3xx

I
V+

Current measurement

UM2392
Motor control firmware components

UM2392 - Rev 1 page 30/60

This optimized configuration using an STM32F3 reduces the number of external components and
microcontroller pins assigned to the MC application.

2. Current Sensing
In order to maximize the resolution of the measurement, the PGA can be used to adapt the level of voltage
drop in the shunt resistor (Rsℎunt), caused by the motor current, up to the maximum range allowed by the
analog to digital converter (ADC).
The PGA has a set of fixed internal gains (x2, x4, x8, x16) as presented in Figure 29. An alternative option in
PGA mode allows you to route the central point of the resistive network on one of the I/Os connected to the
non-inverting input. This feature can be used for instance to add a low- pass filter to PGA, as shown in
Figure 30. Current sensing network using external gains.

If a different value of amplification is required, it is possible to define the amplification network (for example,
as shown in Figure 30.

Figure 30. Current sensing network using external gains

RShunt

ADC

+VDD

OP AMP

iA

6 PWM

COMP

V-
TIM 1,8

BRK2

STM32F3xx

I

Current measurement

R1

R2
V+

It is also possible to set up the motor current measurement network to use external operational amplifiers. In
this case the amplified signals are directly fed to the ADC channels.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 31/60

Figure 31. Current sensing network using internal gains plus filtering capacitor

RShunt

R1

R2

ADC

+VDD

OP AMP

iA

6 PWM

COMP

V-
TIM 1,8

BRK2

STM32F3xx

I
V+

Current measurement

CFilter

The MC library can be arranged to match all the configurations shown here, thanks to the STM32 MC WB.
Refer to STM32 motor control SDK v5.x tools (UM2380) for more information.

3. Over-current Protection
The basic principle of the hardware over-current protection mechanism can be summarized as follows:
– The phase current of the motor flows in the power transistor of the inverter bridge and passes through

the shunt resistor (Rsℎunt) producing a voltage drop (V+).

– This voltage drop is compared with a threshold (V−) defining the maximum admissible current.

– If the threshold is exceeded, a break signal stops the PWM generation putting the system in a safe
state.

All of these actions can be performed using the internal resources of the STM32F302/303 and, in particular,
the embedded comparators and the advanced timer break function (BRK2). As shown in Figure 29. Current
sensing network and overcurrent protection with STM32F302/303, Figure 30. Current sensing network using
external gains and Figure 31. Current sensing network using internal gains plus filtering capacitor the same
signal is fed to both not inverting input of embedded comparators and PGA.
The over-current threshold (V-) can be defined in three different ways:
– Using one of the available internal voltage reference (1.2V, 0.9V, 0.6V and 0.3V);
– Providing it externally using the inverting input pin of the comparator;
– Programming a DAC channel.

Here too, the STM32 MC WB allows for all these configurations when creating a project based on
STM32F302xB/C or STM32F303xB/C MCUs.
On the other hand, it is possible to setup the motor over-current protection network to use external
components. In this case the over-current protection signal – coming from a comparator for instance – is
directly fed to the advanced-timer's BKIN2 pin.
In any case, whether using embedded comparators or external components, a digital filter, placed before the
BKIN2 function, can be enabled and configured in order to reject noises.

4. Resource allocation for Single Drive applications
This section deals with the allocations of hardware resources for single drive applications based on the
STM32F302xB/C or STM32F303xB/C MCU.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 32/60

5. Single-Shunt topology
Depending on the chosen configuration – see the preceding sections – 1 ADC, 1 OPAMP, 1 comparator, and
or 1 DAC channel are to be assigned. Here are the conditions governing the allocation of these peripherals:
– If the Embedded PGA feature is enabled, the selection of the ADC peripheral (and its input pin) is

linked to this specific PGA peripheral;
– If the Embedded HW OCP and Embedded PGA features are enabled, the ADC and the comparator (as

well as their input and '+' pins) to be selected are the ones linked to the chosen PGA peripheral
– If the Embedded HW OCP feature is enabled and the Embedded PGA feature is disabled, the selection

of the comparator is free.
– If the Embedded HW OCP and the Embedded PGA features are both disabled, the selection of the

comparator and the ADC is free.
– If both PGA and comparator for OC protection are used they will share the same input pins for the

motor current measurement signal.
6. Three-Shunt topology

Depending on the configuration – see the preceding sections – 2 ADCs, 2 OPAMPs, 3 comparators, 1 DAC
channel must be assigned. Here are the conditions governing the allocation of these peripherals:
– If the Embedded PGA feature is enabled, the selection of the ADC peripherals (and its input pins) is

linked to these specific PGA peripherals;
– If the Embedded HW OCP and the Embedded PGA features are enabled, the ADCs and comparators

(and their inputs and '+" pins) to select are the ones linked to these specific PGA peripherals (and
theirs '+' inputs);

– If the Embedded HW OCP feature is enabled and the Embedded PGA feature is disabled, the selection
of comparators is free;

– If the Embedded HW OCP and Embedded PGA features are both disabled, the selection of
comparators and ADCs is free;

– The OPAMP1/OPAMP2 pair can be used in a project based on the STM32F302 or on the STM32F303;
the OPAMP3/OPAMP4 pair can be used additionally in a project based on the STM32F303;

– The ADC1/ADC2 pair can be used in a project based on the STM32F302 or on the STM32F303; the
ADC3/ADC4 pair can be used additionally in a project based on the STM32F303.

– If both PGA and comparator for OC protection are used they will share the same input pins for the
motor current measurement signal.

7. Resource allocation for Dual Drive applications
This section deals with dual drive applications that can be designed around an STM32F303 microcontroller.
For these applications, the STM32 MC SDK supports Single-Shunt and Three-Shunt current feedback
network configurations.
Dual Single-Shunt drive, dual Three-Shunt drive and mixed Single-Shunt plus Three-Shunt drive are
supported. But, the sharing of peripherals between the Single-Shunt drive and the Three-Shunt drive is not
allowed, nor is the sharing of peripherals between two Single-Shunt drives.
However, the sharing of peripherals between two Three-Shunt drive is allowed, under the conditions stated
below.

8. Single-Shunt topology
For each motor, depending on the chosen configuration, one ADC, OPAMP and comparator must be
assigned.
– If the Embedded PGA feature is enabled, the selection of ADC peripheral (and input pin) is linked to

this specific PGA peripheral.
– If the Embedded HW OCP and Embedded PGA features are enabled, the selection of ADC and

comparator (and their input and '+" pins) is depends on this specific PGA peripheral (and its '+' input).
– If the Embedded HW OCP is enabled and Embedded PGA features are disabled, the selection of

comparator is free.
– If the Embedded HW OCP and Embedded PGA features are both disabled, the selection of comparator

and ADC is free.
– If both PGA and comparator for OC protection are used they will share the same input pins for the

motor current measurement signal.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 33/60

9. Three-Shunt mixed with Single-Shunt topologies
Depending on the configuration, 2 ADCs, 2 OPAMPs, 3 comparators, 1 DAC channel must be assigned.
– If the Embedded PGA feature is enabled, the selection of ADC peripherals (and input pins) is linked to

this specific PGA peripherals.
– If the Embedded HW OCP and Embedded PGA features are enabled, the selection of ADCs and

comparators (and their inputs and '+" pins) is linked to this specific PGA peripherals (and theirs '+'
inputs).

– If the Embedded HW OCP feature is enabled and the Embedded PGA feature is disabled, the selection
of comparators is free.

– If the Embedded HW OCP and Embedded PGA features are both disabled, the selection of
comparators and ADCs is free.

– The OPAMP1/OPAMP2 pair can be used in a project based on STM32F302 or STM32F303; the
OPAMP3/OPAMP4 pair can be used additionally in a project based on STM32F303.

– The ADC1/ADC2 pair can be used in a project based on STM32F302 or STM32F303; the ADC3/ADC4
pair can be used additionally in a project based on STM32F303.

– If both PGA and comparator for OC protection are used they will share the same input pins for the
motor current measurement signal.

10. Dual Three-Shunt topology, resources not shared
Depending on the configuration, 4 ADCs, 4 OPAMPs, 6 comparators, 2 DAC channels must be assigned.
– If the Embedded PGA feature is enabled, the selection of ADC peripherals (and input pins) is linked to

this specific PGA peripherals.
– If the Embedded HW OCP and Embedded PGA features are enabled, the selection of ADCs and

comparators (and their inputs and '+" pins) is linked to this specific PGA peripherals (and theirs '+'
inputs).

– If the Embedded HW OCP feature is enabled and "Embedded PGA" is disabled, the selection of
comparators is free.

– If the Embedded HW OCP and Embedded PGA features are both disabled, the selection of
comparators and ADCs is free.

– The OPAMP1/OPAMP2 pair can be used in a project based on STM32F302 or STM32F303; the
OPAMP3/OPAMP4 pair can be used additionally in a project based on STM32F303.

– The ADC1/ADC2 pair can be used in a project based on STM32F302 or STM32F303; the ADC3/ADC4
pair can be used additionally in a project based on STM32F303.

– If both PGA and comparator for OC protection are used they will share the same input pins for the
motor current measurement signal.

11. Dual Three-Shunt topology, shared resources
If both drives are Three-Shunts, it is possible to share the ADCs and/or the PGAs to perform the motor
current measurement. Doing this implies that both drives use the same configuration for the motor current
measurement signals amplification: either external operational amplifiers or embedded PGAs.
If shared resource is selected and external operational amplifier is used, it is possible to use the pairs ADC1/
ADC2 or the pairs ADC3/ADC4 for both drivers.
If shared resource is selected and embedded PGAs are used, the following configuration is used:
– The pair OPAMP1/OPAMP3 is used
– OPAMP gains is only "Internal"
– External capacitor filer is not allowed
– Input pins are: PA5, PA7, and PB13 respectively U, V, W for motor 1 and PA1, PA3 and PB0

respectively U, V, W for motor 2.

In this case, if the hardware over current protection is managed by internal comparators, it is mandatory to
connect externally the pins PA3 with one of the pins PB14 or PD14 and connect externally the pins PA5 with
one of the pins PB11 or PD11.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 34/60

3.3.2 Speed and position feedback components
These components provide the speed and the angular position of the rotor of a motor (both electrical and
mechanical).
Measuring the position of the rotor in real time is mandatory for the FOC strategy as the Park and inverse Park
transforms use the angular electrical position of the rotor to compute the iq and id or iα and iβ current components
respectively.
In addition, the rotation speed is one of the preferred control modes when driving motors. Rotor speed
measurement is then crucial to close the Reference computation loop. Finally, the speed measurement is also
needed for the Feed Forward algorithm.
Four implementations of the Speed and Position Feedback feature are provided by the STM32 MC firmware. Two
of them use sensors embedded in some motors like Hall sensor or quadrature encoders. The other two provide
estimation of the speed and the position of the rotor based on the outcome of a Luenberger observer that
estimates the Back-EMF of the motor. This observer is coupled with a Phase-Locked Loop (PLL) for one and a
COordinate Rotation DIgital Computer (CORDIC) for the other that reconstruct the rotor electrical angle and
speed.
These four implementations are built on a generic Speed and Position Feedback component – named the Speed
and Position Feedback component – which they extend and which provides the data that are common to all of
them. This base component cannot be used as is since it does not constitute a complete implementation of the
features. However, it provides some getter functions that are useful to other components and its factorizing of the
feature’s data makes it easier to navigate through the code and understand it.

Table 13. Available Speed and Position Feedback Components

Component Description

Encoder Speed and Position Feedback This component uses the output of a quadrature encoder to provide a
measure of the speed and the position of the rotor of the motor.

Hall Speed and Position Feedback This component uses the output of two Hall effects sensors to provide a
measure of the speed and the position of the rotor of the motor.

State Observer + PLL Speed and Position
Feedback

This component uses a State Observer coupled with a software PLL to
provide an estimation of the speed and the position of the rotor of the
motor.

State Observer + CORDIC Speed and Position
Feedback

This component uses a State Observer coupled with a CORDIC
(COordinate Rotation DIgital Computer) to provide an estimation of the
speed and the position of the rotor of the motor.

A fifth implementation is also present in the firmware: the Virtual Speed and Position Feedback component. This
component is only used during the Rev up phase of the motor, when state observer based implementations are
used for closed loop mode.

3.3.3 Bus voltage sensing components
The STM32 MC firmware provides components to report the value of the bus voltage. A measurement of the bus
voltage is, of course, needed to compute the power injected into the motor. It is also needed for features like the
Inrush Current Limiter and the Under Voltage Protection or algorithms like the Feed Forward.
Two implementations of a bus voltage sensing component are available. One that basically uses an ADC channel
and two big resistors to measure the voltage (the Resistor Divider Bus Voltage Sensor) and another one that
actually does not measure anything and only report a configured value (the Virtual Bus Voltage Sensor). This
latter one is useful to get an estimation of the electrical power consumed by the motor, assuming that bus voltage
remains constant and equal to the configured value. Using this latter implementation with the Feed Forward
algorithm cannot provide reliable results and – of course – it makes no sense with the Under Voltage Protection.
However, it can be handy when prototyping or for low-cost solutions.
For its measurements, the resistor divider bus voltage sensor implementation uses a channel of the ADC
configured for the current feedback of motor 1, thanks to the regular conversion API. Refer to Section 3.4.6 ADC
conversions for the Application for more details.

UM2392
Motor control firmware components

UM2392 - Rev 1 page 35/60

3.3.4 Temperature measurement component
The STM32 MC firmware provides one component to report the motor control subsystem’s temperature. This
component – the NTC Temperature Sensor – acts both as a real temperature sensor that uses an ADC channel to
measure the temperature from a probe and as a virtual temperature sensor that basically reports a configured
temperature value.

3.3.5 Power Measurement component
One component is available for reporting the electrical power consumed by the motor. This is the PQD Motor
Power Measurement that uses measured vq, vd and iq, id values to compute the power. This is currently the
only available implementation though the STM32 MC firmware is ready for additional ones.

3.3.6 Drive Regulation components
This section presents some of the drive regulation components that are delivered with the firmware. For a
complete information on all these components, refer to the STM32 Motor Control Reference Manual.
PID
The PID component provides an implementation of a proportional–integral–derivative controller. This component
is primarily used by the FOC loop and in the speed and torque controller.
It comes in two flavors: a full PID using all three terms and a simpler one that only use the Proportional and
Integral terms. The Motor Control subsystem uses the latter one.
In a single drive motor control subsystem, at least three PID components are used.
Revup
The Revup component is responsible for starting the motor. It task begins when the motor is started in open loop
and ends when the current control loop can be closed. One such component is used per motor.
State Machine
The Motor Control subsystem state machine is managed by this component. See Section 3.5 Motor Control State
Machine for more information on the state machine.
One such component is used per motor.
Speed and Torque Control
This component serves two purposes:
1. It produces the iq* current reference from the torque or speed reference submitted by the application. As

such, it manages the ramps programmed by the application
2. It regulates this speed or torque reference thanks to a PID component.
One such component is used per motor.

3.4 Motor control cockpit
The motor control cockpit plays a central role in a motor control subsystem; it configures and integrates the
components selected for the MC application. And, in addition, it provides the implementation of the FOC,
reference computation and safety loops that match with designed application.
As such, it has to support a vast diversity of configurations that lead to a potentially huge and cumbersome source
code. To avoid this issue and to provide a code that is as simple as possible, most of the cockpit’s code is
generated from the application’s characteristics. Thanks to this generation, only these portions of the code that
are needed to the MC system are present in the MC cockpit’s source code.
Despite its changing nature, the code of the MC cockpit is organized in a sole and structured way.

3.4.1 Motor Control Cockpit main source files
This section lists the most important source files that make the MC cockpit. Refer to the STM32 MC SDK
reference documentation (delivered with the SDK) for a complete list of these files and their documentation.
motorcontrol.c, motorcontrol.h:
motorcontrol.c mainly contains a function, MX_MotorControl_Init(), that is used by the application
generated by STM32CubeMx to initialize the MC subsystem. Its companion file, motorcontrol.h is only useful to
the CubeMX generated main.c file in order to get the prototype of the function it calls.
mc_api.c, mc_api.h:

UM2392
Motor control cockpit

UM2392 - Rev 1 page 36/60

This pair of files contains the definition and implementation of the high level Application Programming Interface
that the application can use to control the motors. See Section 4.2 Motor control API for a description of this API.
As such, mc_api.h is file that applications need to include to use it.
mc_config.c, mc_config.h:
The mc_config.c file contains the structures and the data used to configure all the components used by the MC
subsystem. The mc_config.h file exports the names of the structures for the application to use them as the Lower
Level API as described in Section 4.3 Motor control low level API.
mc_parameters.c, mc_parameters.h:
The mc_parameters.c file contains structures and data that contain constant parameters for the MC subsystem.
Its role is similar to the mc_config.c file except that its content can be fully placed in FLASH memory since it is
constant. The mc_parameters.h file exports the names the structures for the application to read them in the
scope of the Lower Level API as described in Section 4.3 Motor control low level API.
mc_types.h:
This file contains type definitions that are used across all the motor control subsystem. In addition, it includes all
relevant STM32 Cube LL header files that are needed for the motor control subsystem.
Motor control subsystem parameters:
A series of files is generated that contain a lot of constants – defined as C preprocessor symbols – which are set
to values that are meaningful to the MC subsystem and that are used in its code. Some of these files are
dedicated to some STM32 family and are only present if the chosen MCU is part of this family. The list of these
files:
• drive_parameters.h
• pmsm_motor_parameters.h
• power_stage_parameters.h
• parameters_conversion.h
• parameters_conversion_f0xx.h
• parameters_conversion_f30x.h
• parameters_conversion_f4xx.h
• parameters_conversion_f10x.h
• parameters_conversion_f7xx.h
• parameters_conversion_l4xx.h

Interrupt handling:
The motor control subsystem provides handlers for the interrupts it uses. These are defined in the following files,
that depend in the chosen STM32 family:
• stm32f0xx_mc_it.c
• stm32f30x_mc_it.c
• stm32f4xx_mc_it.c
• stm32f10x_mc_it.c
• stm32f7xx_mc_it.c
• stm32l4xx_mc_it.c

More information on the handling of interruptions of the Motor Control subsystem is given in
Section 3.4.3 Interrupts and Real Time aspects.
mc_tasks.c:
This file contains the implementation of the core of the MC cockpit. It contains the code of the loops described in
section Section 3.2 Motor control firmware subsystem. More information on them is given below.

3.4.2 Tasks of the motor control subsystem
The code of each of the three loops that are at the heart of the MC firmware subsystem is distributed into “Task”
functions.
The FOC loop is implemented in the TSK_HighFrequencyTask() function. This function is executed at the
PWM frequency rate (That is: once every PWM Period, see section Section 3.3.1 Current sensing and PWM
generation components). The PWM Frequency is the highest frequency in the motor control subsystem. It is
executed in the handler of the interrupt that occurs when the ADC peripherals used to capture the phase current
values complete their conversions. The main task of this function is to compute the PWM duty cycles that are to

UM2392
Motor control cockpit

UM2392 - Rev 1 page 37/60

be programmed in the PWM Timer channels. Hence, the time this function has to operate is limited as it needs to
complete before the next Timer update event, when new PWM duty cycles are taken into account. Failing to
execute in this lapse of time results in the FOC execution error.

Figure 32. High Frequency Task execution

Timer Update
Event

Timer Update
Event

ADC End of
Conversion

ADC End of
Conversion

PWM Period High Frequency Task
execution window

Timer Update
Event

The Reference computation loop is implemented in two functions, one per motor:
TSK_MediumFrequencyTaskM1() and TSK_MediumFrequencyTaskM2() for motor 1 and 2 respectively (the
second one is only present in a dual motor application.). These functions need to be invoked periodically at a
frequency that is typically lower than that of the TSK_HighFrequencyTask(). In the STM32 MC firmware
subsystem, the functions are called on the SysTick interrupt.

Note: This calling frequency has an impact on other firmware parameters. As such, the SysTick frequency cannot be
changed independently of the speed regulator parameter in the STM32 MC WB.
The Safety loop is implemented by the TSK_SafetyTask() function. This function basically calls one of
TSK_SafetyTask_PWMOFF(), TSK_SafetyTask_RBRK() or TSK_SafetyTask_LSON() depending on the
chosen Over voltage protection. TSK_SafetyTask() is invoked periodically, at the same frequency as the
reference computation loop and on the same interrupt.

3.4.3 Interrupts and Real Time aspects
The MC firmware subsystem uses several interrupts, among which the ADC JEOS for instance. For each of these
interrupts, the MC cockpit provides the handler function that is called by the NVIC thus taking a complete control
over all the interrupts served by the handler even if it does not need all of them. This is done so for performance
reasons.
The firmware of the STM32 MC SDK is designed to support nested interrupts (interrupts handler can be
interrupted by higher priority interrupts). Interrupts priorities configured by the STM32 MC WB in the IOC file
should be considered with care as the firmware relies on their ordering.
In the case where an application would require to execute in an operating system, the Reference computation and
the Safety loops may be executed in an OS task context (in the same task or in separate ones) as long as the
execution periodicity of these loop is respected. The FOC loop may also be executed in an OS task context but
this is strongly discouraged for performance reason. Is this was absolutely necessary, this loop should be placed
in the highest priority OS task and it is then mandatory that the Reference computation and Safety loops be also
placed in an OS task.
In addition, it is highly recommended that no interrupt with a higher priority exist in the system. The key point here
is to make sure that the FOC loop executes in the High Frequency Task execution window as defined in
Figure 32. High Frequency Task execution.

3.4.4 Configuration and Parameters
Components instantiated for the MC subsystem have a handle and need to be configured. These handles are
defined in the mc_config.c file. Applications that need to access these components directly simply need to include
mc_config.h file to benefit from the declaration of these variables. Note that handles are variables, not constants,
and are thus stored in RAM.
However, some of data placed in these handle are constant by nature. For such cases, specific structures have
been created to group these constant parameters. Handles that use these contain a pointer to constant instances
of such structures that are defined in the mc_parameters.c file. All elements in this file are constant and are
usually placed in FLASH memory by the linker. Applications that need to access these parameter structures
directly can include mc_parameters.h in order to get the declarations of these structures.

UM2392
Motor control cockpit

UM2392 - Rev 1 page 38/60

There exists a last category of parameters in the MC subsystem. It consists in C preprocessor symbols that are
defined in the files listed in Motor control subsystem parameters: . These symbols are computed by the STM32
MC WB and it is hazardous to change them directly in these files.

3.4.5 Fault handling
The MC subsystem reports the faults it detects to the application. On the detection of a fault, the MC firmware first
executes actions to place the motor hardware subsystem in a safe state and then it enters a Fault state. These
actions always result in the faulty motor being stopped.
The faults that are detected are the following:

Table 14. Detected fault

Symbol Name Description

MC_NO_FAULTS No fault is currently pending on the Motor Control Subsystem

MC_FOC_DURATION The FOC loop lasted too long (the PWM Timer update event occurred before the new PWM
duty cycle values were available)

MC_OVER_VOLT An over voltage condition was detected on the Bus

MC_UNDER_VOLT An under voltage condition was detected on the Bus

MC_OVER_TEMP The Temperature of the system has crossed the maximum threshold

MC_START_UP The startup phase did end before the speed and position estimation was reliable

MC_SPEED_FDBK The speed feedback is not reliable any more (usually happens when the rotor speed goes too
low)

MC_BREAK_IN An over current condition was detected (by the phase driver)

MC_SW_ERROR A non-motor dependent error (pure MC firmware error) was detected.

The handling of faults in the MC firmware involves two states of the MC state machine. When a fault is detected,
the MC state machine enters the FAULT_NOW state which indicates that a fault condition currently exist. On
entering this state, the PWM output is immediately cut off. The MC state machine remains in this state as long as
the fault condition remains valid, that is, as long as the condition that led to declaring the fault is true.. When no
fault condition is active any more the MC state machine switches to the FAULT_OVER state and will remain in
that state until the application acknowledges them. On the acknowledgement of the Faults, the MC state machine
goes back to the STOP state and the subsystem is ready to start the motor again. See Section 3.5 Motor Control
State Machine for a complete description of the MC state machine.

3.4.6 ADC conversions for the Application
There are situations where the application needs to use free channels of the ADC peripheral used by the MC
subsystem for phase currents measurement. As described in Configuring peripherals with STM32CubeMx these
ADC channels can be configured with STM32CubeMx.
However, the application must not use these channels directly. It should rather use the API functions described in
Programming a regular conversion on a Motor Control ADC, Retrieving the result of a Motor Control ADC regular
conversion and Retrieving the state of a Motor Control ADC regular conversion. Indeed, the instants when the
phase current measurements are to be made must be set with a high precision within the PWM period. In the
firmware, this precision is achieved by using Injected conversions and external triggers coming from the PWM
timer to start them.
Hence, the Application cannot use injected conversions on these ADC peripherals as they are reserved for motor
control and they must avoid disturbing the injected conversion. The purpose of the APIs mentioned here is to
allow the application to perform regular ADC conversions without disturbing the motor control subsystem. Getting
a conversion done with them is a three-step process:
1. The MC_ProgramRegularConversion() function is called to request an ADC regular conversion on the

given channel and with the given conversion time. The motor control subsystem then schedules the
requested conversion that will occur right after the next Injected conversion, when there is no risk of
collision;

UM2392
Motor control cockpit

UM2392 - Rev 1 page 39/60

2. The Application can then call the MC_GetRegularConversionState() function to determine if the
requested conversion has been completed.

3. Finally, the Application calls the MC_GetRegularConversionValue() to retrieve the converted value.

Note: The motor control subsystem will only accept one conversion at a time. So, the application should use the
MC_GetRegularConversionState() to determine if the conversion can be handled. In addition, all
conversion requests must be performed inside routines with the that execute at the same priority level.

3.5 Motor Control State Machine
The MC firmware subsystem maintains a state machine for each motor it controls. This state machine manages
MC operation control for its motor. The tasks executed on each motor and the API functions that can be called
depend on the state current state of its MC state machine.
Figure 33. Motor state machine details the full MC state machine. States are indicated in the blue circles while
possible transitions between the states are marked with the arrows.
The actual state machine may be simpler depending on the configured application. Indeed, some states are only
needed in specific cases. For instance, the states about alignment are only useful if a quadrature encoder is used.
The state machine is never directly changed by the application. Rather, some APIs called by the Application entail
changes of state. These APIs are the following ones:
• MC_StartMotor1() and MC_StartMotor2() that trigger the target motor’s start procedure, switching

from IDLE to IDLE_START.
• MC_StopMotor1() and MC_StopMotor2() that trigger the target motor’s stop procedure, switching to

ANY_STOP.
• AcknowledgeFaultMotor1() and AcknowledgeFaultMotor2() that acknowledge faults and makes

the target motor ready to start, switching to STOP_IDLE.

These functions check they can perform the state switch and they fail if they cannot. They can be called from any
context.
The rest of the management of the motors’ state machines is handled by the Reference computation loop, that is
in the TSK_MediumFrequencyTaskM1() and TSK_MediumFrequencyTaskM2() functions.

UM2392
Motor Control State Machine

UM2392 - Rev 1 page 40/60

Figure 33. Motor state machine

IDLE

ALIGN
CHARGE

BOOT
CAP

ALIGN
OFFSET
CALIB

ICL WAIT

IDLE
ALIGNMENT

ALIGNMENT

IDLE
START

CHARGE
BOOT CAP

OFFSET
CALIB

START

START
RUN

RUN

ANY STOP

STOP

STOP
IDLE

FAULT
NOW

FAULT
OVER

12

1

2

From Any State but
FAULT NOW and
FAULT OVER

From Any State but:
ICL WAIT, IDLE,
ANY STOP, STOP,
STOP IDLE, FAULT NOW
FAULT OVER

Table 15. Motor state machine

State Description

ICLWAIT The MC subsystem is waiting for Inrush Current Limiter deactivation. Is not possible to spin
the motor while ICL is active.

IDLE The Motor is not spinning, but is ready to start or to align.

IDLE_ALIGNMENT
Transition state entered on the encoder alignment command. The motor control subsystem
Next states can be ALIGN_CHARGE_BOOT_CAP or ALIGN_OFFSET_CALIB according
the configuration. It can also be ANY_STOP if a stop motor command has been given.

ALIGN_CHARGE_BOOT_CAP
Persistent state where the gate driver boot capacitors will be charged. Next states will be
ALIGN_OFFSET_CALIB. It can also be ANY_STOP if a stop motor command has been
given.

ALIGN_OFFSET_CALIB
Persistent state where the offset of motor currents measurements will be calibrated. Next
state will be ALIGN_CLEAR. It can also be ANY_STOP if a stop motor command has been
given.

UM2392
Motor Control State Machine

UM2392 - Rev 1 page 41/60

State Description

ALIGNMENT Persistent state in which the encoder are properly aligned to set mechanical angle, following
state can only be ANY_STOP.

IDLE_START
"Pass-through" state containg the code to be executed only once after start motor command.
Next states can be CHARGE_BOOT_CAP or OFFSET_CALIB according the configuration.
It can also be ANY_STOP if a stop motor command has been given.

CHARGE_BOOT_CAP Persistent state where the gate driver boot capacitors will be charged. Next states will be
OFFSET_CALIB. It can also be ANY_STOP if a stop motor command has been given.

OFFSET_CALIB Persistent state where the offset of motor currents measurements will be calibrated. Next
state will be CLEAR. It can also be ANY_STOP if a stop motor command has been given.

START
Persistent state where the motor start-up is intended to be executed. The following state is
normally START_RUN as soon as first validated speed is detected. Another possible
following state is ANY_STOP if a stop motor command has been executed.

START_RUN
"Pass-through" state, the code to be executed only once between START and RUN states
it’s intended to be here executed. Following state is normally RUN but it can also be
ANY_STOP if a stop motor command has been given.

RUN Persistent state with running motor. The following state is normally ANY_STOP when a stop
motor command has been executed.

ANY_STOP
"Pass-through" state, the code to be executed only once between any state and STOP it’s
intended to be here executed. Following state is normally STOP.

STOP Persistent state. Following state is normally STOP_IDLE as soon as conditions for moving
state machine are detected.

STOP_IDLE
"Pass-through" state, the code to be executed only once between STOP and IDLE it’s
intended to be here executed. Following state is normally IDLE.

FAULT_NOW
Persistent state, the state machine can be moved from any condition directly to this state by
STM_FaultProcessing() function. This method also manage the passage to the only
allowed following state that is FAULT_OVER.

FAULT_OVER
Persistent state where the application is intended to stay when the fault conditions
disappeared. The Following state is normally STOP_IDLE, state machine is moved as soon
as the user has acknowledged the fault condition.

UM2392
Motor Control State Machine

UM2392 - Rev 1 page 42/60

4 Application Programming Interfaces

4.1 Measurement Units
Many functions in the MC firmware take physical values as arguments. Some of these arguments are expressed
with unusual measurement units in order to maximize the usage of the dynamic provided by the argument types.
It is key to achieve an optimal MC precision. The following sections describe these units.

4.1.1 Rotor angle unit
The rotor angle measurement unit used in the MC API is called s16degree, and is defined as follows:1s16degree = 2π65536rad (17)

The following figure shows how an angle expressed in radians can be converted into the s16degree domain.

Figure 34. Radians versus s16degrees

0
2π

32767

-32767

π

s16degree

rad

4.1.2 Rotor speed unit
Two units are used by the MC APIs to express the rotor speed:
• Tenth of Hertz, often referred to as “01Hz” in the code with:1dHz = 1"01Hz" = 0.1Hz (18)

• Digit Per control Period, referred to as dpp: the dpp expresses the angular speed as the variation of the
electrical angle (expressed in s16degree) within an FOC period.1ddp = 1TFOCs16degree/s = 2π65536 × TFOCrad/s = 2π65536 × FFOCrad/s (19)

Where TFOC is the FOC period in seconds and FFOC the FOC frequency in Hz.

An angular speed, expressed as the frequency in Tenth of Hertz (01Hz), can be easily converted to dpp using the
formula: ωdpp = ω01Hz 6553610 × TFOC (20)

UM2392
Application Programming Interfaces

UM2392 - Rev 1 page 43/60

4.1.3 Current measurement unit
The phase current measurement unit used by the MC APIs is called s16A and is defined as follows:1s16A = IMAx32768 (21)

Where IMAX is the Maximum measureable current. In a shunt resistor-based current sensing architecture for
instance, IMAX = VDD2 × RSℎunt × GAOP (22)

Where VDD is the reference voltage used for the ADC, RSℎunt the shunt resistor and GAOP the gain of the
amplification stage in front of the ADC (see Figure below). A measured current can then be converted to s16A
using the formula: is16A = 65536 × RSℎunt × GAOPVDD × iA (23)

Figure 35. Current sensing network

RShunt

R1

R2
ADC

+VDD

OP AMP

R4 R5

iA

GAOP

4.1.4 Voltage measurement unit
The applied phase voltage unit used by the Motor Control APIs is called s16V and is defined as follows:1s16V = VMAX32768 (24)

4.2 Motor control API
The Motor Control API , also referred to as the MC API, is the main and most straightforward interface offered to
applications for controlling the motors driven by the STM32 MC subsystem.
The STM32 MC SDK can drive up to 2 motors with a single STM32 MCU. For the sake of simplicity, the MC API
offers one set of functions for each of the motors, restricting the number of parameters these functions expect to
the bare minimum. The motor each function acts on is indicated clearly in the name of the function.
The main purpose of this API is to start, stop the motors and control their rotation. The control of the rotation of a
motor is achieved by programming either a current, a torque or a speed reference that the PID regulators of the
motor control subsystem will maintain. Such a reference must be set prior to starting a motor.
The current reference is programmed directly by providing direct and quadrature target current values, while the
torque or speed references are programmed as ramps that move the actual reference from its current value to its
target value in a given time.
A programmed reference or ramp is executed at once if the motor is spinning and in steady state (its state
machine is in the RUN state). Otherwise, it is buffered until the state machine of the motor reaches the RUN state.
Only one reference or ramp can be programmed at a time, the last one replacing the previous.

UM2392
Motor control API

UM2392 - Rev 1 page 44/60

Though the current reference can be set directly as stated above, the preferred method for driving motors is to
control either their speed or their torque. Which control mode is active depends on the last programmed
reference. If it is a speed ramp, then the motor is controlled by the speed. Otherwise it is controlled by the torque
– even if the last programmed reference is a current reference. Torque control is the default control mode.
In addition to the rotation controlling functions, the MC API also provides functions to get the values of various
parameters and state variables of the MC subsystem such as the mechanical or electrical speed for instance.
All the functions of the MC API that expect physical values as argument or that return such values express them
using the units defined in Section 4.1 Measurement Units. When these physical values are two-dimension values
they are embedded into dedicated structures – Curr_Components and Volt_Components – that are described
below.
A brief descriptions of the main functions the MC API consists of is given here along with the usage principles. A
complete definition is available in the STM32 MC SDK Reference Manual.

4.2.1 Curr components

This structure is used to hold two-dimension current values such as iq, id and iα, iβ values. It is also used for
the three dimension ia, ib, ic in which case only ia, ib are stored and ic is deduced thanks to the relation:ia+ ib+ ic = 0 .

Two-dimension current value structure:

typedef struct
{
 int16_t qI_Component1;
 int16_t qI_Component2;
} Curr_Components;

Usually, Curr_Components variables contain values expressed in the s16A unit. The reference documentation
of each API or function in the STM32 MC firmware that uses this structure reminds which units are used.
When used for iq, id values, qI_Component1 holds iq and qI_Component2 holds id .

For iα, iβ , qI_Component1 holds iα and qI_Component2 holds iβ .

Finally, for ia, ib, ic , qI_Component1 holds ia and qI_Component2 holds ib .
4.2.2 Volt component

This structure is used to hold two-dimension voltage values. It is used in the firmware for storing vq, vd andvα, vβ values.

Usually, Volt_Components variables contain values expressed in the s16V unit. The reference documentation of
each API or function in the STM32 MC firmware that uses this structure reminds which units are used.
Two-dimension voltage value structure:

typedef struct
{
 int16_t qV_Component1;
 int16_t qV_Component2;
} Volt_Components;

The assignment of the fields of the Volt_Components structure is similar to that of the Curr_Components one:
qV_Component1 is set to vq or vα ; qV_Component2 is set to vd or vβ .

4.2.3 Starting a motor

bool MC_StartMotor1(void);
bool MC_StartMotor2(void);

Starts the target Motor. Prior to calling this function, a Torque ramp, a Speed ramp or a current reference must
have been set.

UM2392
Motor control API

UM2392 - Rev 1 page 45/60

4.2.4 Stopping motor

bool MC_StopMotor1(void);
bool MC_StopMotor2(void);

Stops the target Motor. If the target motor is not spinning, this function does nothing. Otherwise, the PWM outputs
are switched off, whether the MC subsystem is in closed loop or still in the rev up phase.

4.2.5 Programming a speed ramp

void MC_ProgramSpeedRampMotor1(int16_t hFinalSpeed, uint16_t hDurationms);
void MC_ProgramSpeedRampMotor2(int16_t hFinalSpeed, uint16_t hDurationms);

Programs a speed ramp on the target motor. If the target Motor is in the RUN state – that is: the Motor is spinning
and is in steady state – the ramp is executed immediately. Otherwise, it is buffered until this state is reached.
A speed ramp takes the motor from its rotation speed at the start of the ramp to the hFinalSpeed target speed of
the ramp in the hDurations duration.

4.2.6 Programming a torque ramp

void MC_ProgramTorqueRampMotor1(int16_t hFinalTorque, uint16_t hDurationms);
void MC_ProgramTorqueRampMotor2(int16_t hFinalTorque, uint16_t hDurationms);

Programs a torque ramp on the target motor. If the target Motor is in the RUN state, the ramp is executed
immediately. Otherwise, it is buffered until this state is reached.
A torque ramp takes the motor from the torque it produces at the start of the ramp to the hFinalTorque target
torque of the ramp in the hDurationms duration. Note that the hFinalTorque parameter actually represents the iq
current expressed in the s16A unit.

4.2.7 Setting the current reference

void MC_SetCurrentReferenceMotor1(Curr_Components Iqdref);
void MC_SetCurrentReferenceMotor2(Curr_Components Iqdref);

Programs the current reference for the target Motor. If the target Motor is in the RUN state, the reference is
immediately active. Otherwise, it is buffered until this state is reached.

4.2.8 Stopping an on-going speed ramp

bool MC_StopSpeedRampMotor1(void);
bool MC_StopSpeedRampMotor2(void);

Stops the execution of the current speed ramp of the target Motor.

4.2.9 Retrieving the status of a ramp

bool MC_HasRampCompletedMotor1(void);
bool MC_HasRampCompletedMotor2(void);

Returns true if the last submitted ramp for the target Motor has completed, false otherwise.

4.2.10 Retrieving the state of commands

MCI_CommandState_t MC_GetCommandStateMotor1(void);
MCI_CommandState_t MC_GetCommandStateMotor2(void);

Returns the state of the last submitted command for the target motor. “Command” means a speed or torque ramp
or a current reference setting.
The returned state is an MCI_CommandState_t enumerable value:
• MCI_BUFFER_EMPTY: no command has been submitted;

UM2392
Motor control API

UM2392 - Rev 1 page 46/60

• MCI_COMMAND_NOT_ALREADY_EXECUTED: a command has been buffered but its execution has not
completed yet;

• MCI_COMMAND_EXECUTED_SUCCESFULLY: Execution of the last buffered command has completed
successfully;

• MCI_COMMAND_EXECUTED_UNSUCCESFULLY: Execution of the last buffered command has completed
unsuccessfully.

4.2.11 Retrieving the control mode of the motor

STC_Modality_t MC_GetControlModeMotor1();
STC_Modality_t MC_GetControlModeMotor2();

Returns the current control mode for the target motor. The returned STC_Modality_t enum value can be either
STC_TORQUE_MODE for Torque of STC_SPEED_MODE for Speed.

4.2.12 Retrieving the direction of rotation of the motor

int16_t MC_GetImposedDirectionMotor1(void);
int16_t MC_GetImposedDirectionMotor2(void);

Returns the direction imposed by the last command on the target motor. The returned value is either 1 or -1.

4.2.13 Retrieving speed sensor reliability

bool MC_GetSpeedSensorReliabilityMotor1(void);
bool MC_GetSpeedSensorReliabilityMotor2(void);

Returns true if the speed sensor of the target motor provides reliable values.

4.2.14 Retrieving average mechanical rotation speed of the motor

int16_t MC_GetMecSpeedAverageMotor1(void);
int16_t MC_GetMecSpeedAverageMotor2(void);

Returns the last computed average mechanical rotor speed for the target Motor, expressed in dHz (tenth of
Hertz).

4.2.15 Retrieving phase current amplitude

int16_t MC_GetPhaseCurrentAmplitudeMotor1(void);
int16_t MC_GetPhaseCurrentAmplitudeMotor2(void);

Returns the amplitude of the phase current injected in the target motor, expressed in s16A unit.

4.2.16 Retrieving phase voltage amplitude

int16_t MC_GetPhaseVoltageAmplitudeMotor1(void);
int16_t MC_GetPhaseVoltageAmplitudeMotor2(void);

Returns the amplitude of the phase voltage applied to the target motor, expressed in s16V unit.

4.2.17 Retrieving electrical angle of the motor

int16_t MC_GetElAngledppMotor1(void);
int16_t MC_GetElAngledppMotor2(void);

Returns the electrical angle of the rotor of motor 1, in DDP format.

4.2.18 Motor control fault acknowledgement

int16_t MC_AcknowledgeFaultMotor1(void);
int16_t MC_AcknowledgeFaultMotor2(void);

UM2392
Motor control API

UM2392 - Rev 1 page 47/60

Acknowledges MC faults pending on the target motor. This function returns true if faults were indeed pending and
false otherwise. Refer to Section 3.4.5 Fault handling for more information on MC fault management.

4.2.19 Retrieving the latest motor control faults

int16_t MC_GetOccurredFaultsMotor1(void);
int16_t MC_GetOccurredFaultsMotor2(void);

Returns a bit field showing faults that occurred since the MC state machine of the target motor was moved to the
FAULT_NOW state. Refer to Section 3.4.5 Fault handling for more information on MC fault management and to
Section 3.5 Motor Control State Machinesection for a description of the MC state machine.

4.2.20 Retrieving all motor control faults

int16_t MC_GetCurrentFaultsMotor1(void);
int16_t MC_GetCurrentFaultsMotor2(void);

Returns a bit field showing all current faults on the target motor. Refer to section Section 3.4.5 Fault handling for
more information on MC fault management.

4.2.21 Retrieving the state of the motor control state machine

int16_t MCI_GetSTMStateMotor1(void);
int16_t MCI_GetSTMStateMotor2(void);

Returns the current state of the target motor state machine. Refer to section Section 3.5 Motor Control State
Machine for a description of the MC state machine and of the values of the State_t enumerable.

4.3 Motor control low level API
The low level application programming interface provided by the MC firmware allows applications that need it a
finer control over the internals of the MC subsystem. This API consists of all the components that are instantiated
to form the subsystem. These components can be addressed by the application thanks to their handles. These
handles are defined in the mc_config.c file and can be accessed by including the mc_config.h file. For more
information, see the STM32 MC SDK reference manual delivered with the SDK.

UM2392
Motor control low level API

UM2392 - Rev 1 page 48/60

5 Anatomy of a motor control project

STM32CubeMx generates a software project organized as shown in the Figure 36. Generated project disk layout.

Figure 36. Generated project disk layout

The EWARM, MDK-ARM and TrueSTUDIO folders contain the information that describe the content of the project to
the IAR EWARM, Keil µVision IDE or Atollic TrueSTUDIO, respectively. The STM32 MC WB / STM32CubeMx
generates only one of these depending on the chosen IDE.
The EWARM folder contains a workspace file, Project.eww that, when open with the IAR EWARM IDE allows the
project to be built, loaded in the target MCU , run and debugged (See Figure 37).

UM2392
Anatomy of a motor control project

UM2392 - Rev 1 page 49/60

Figure 37. EWARM project folder

Similarly, the MDK-ARM folder contains an *.uvprojx file that allows the project to be built, loaded, run and
debugged when open in Keil.

Figure 38. Keil project folder

Lastly, the TrueSTUDIO folder contains a sub-folder named after the project, in which a .cproject file can be
found.
Double clicking this file opens the project in the Atollic TrueSTUDIO IDE which can then be built, loaded into the
target MCU, run and debugged.

UM2392
Anatomy of a motor control project

UM2392 - Rev 1 page 50/60

Figure 39. TrueSTUDIO project folder

The Drivers folder contains the STM32 HAL libraries and the CMSIS ones that are needed for the target MCU.
And the MotorControl one hosts the code of the MC firmware components selected for the configured project.

Note: This last folder resides in a folder named after the MC SDK release being used.
Usually, users do not need to modify any of the aforementioned folders directly. All the code that users may
interfere with is located in the Inc and Src folders. These folders contain code that has been generated
specifically for the project.
The first file of interest here is the Src/main.c file which main purpose is to contain the main() function that
initializes the MCU peripherals, the MC subsystem and that runs the main application’s loop. This function is the
central place where the firmware aspects of the MC application would reside.
In the same folder, Src, are the source files generated for the MC cockpit (See Figure 40).

UM2392
Anatomy of a motor control project

UM2392 - Rev 1 page 51/60

Figure 40. Generated sources folder

The example displayed here is designed for an STM32F3 MCU as can be inferred from some of the file names,
but it can be easily extended to the other STM32 families.
One notable thing is the stm32f30x_it.c / stm32f30x_mc_it.c pair of files. The former is generated by
STM32CubeMx and contains the definition of interrupt handling functions. This file should only contain the
handlers for these interrupts that are not used by the MC firmware subsystem. Indeed, as stated in
Section 3.4.3 Interrupts and Real Time aspects, the MC subsystem takes ownership of the interrupts it handles; it
needs to for performance reasons.
Other noticeable files are Inc/mc_config.h and Src/mc_config.c that contain all the definitions of the handles of
the components used in this MC subsystem. As explained in Section 3.4.4 Configuration and Parameters,
mc_config.h file can be included by the application in order to access the handles of the subsystem’s component
– the Lower Layer API of the MC subsystem. And, as described in Section 3.4.2 Tasks of the motor control
subsystem, the Src/mc_tasks.c file contains the implementation of the MC loops.

UM2392
Anatomy of a motor control project

UM2392 - Rev 1 page 52/60

All these files are generated by STM32CubeMx from templates and data provided by the STM32 MC WB. Each
time a change is made, either to the pure MC aspects of the project – through the Workbench – or to other
aspects of the Application – through STM32CubeMx – these files get re-generated. However, it may happen that
users need to modify these files.
To avoid such modifications to be lost from one generation to the other, these files contain special section – the
User Sections – in which it is possible to place code that is kept across generations.
A User Section is a code fragment surrounded by special comments as shown below:
User Code Sections:

/* USER CODE BEGIN XXX */
User code…
/* USER CODE END XXX */

At the beginning of such a section a /* USER CODE BEGIN XXX */ comment is found. XXX represents an
identifier, unique to the file that is used to save the user code under a reference that allows it to be retrieved when
the file is regenerated. The section is then terminated by a /* USER CODE END XXX */ comment, with the same
identifier.
User Code sections have been placed where they are thought to be useful. Application developers can place the
code they want in these sections. STM32CubeMx guarantees that this code is kept across regenerations.
However, note that some conditions apply:
• The statements above are only valid for code inserted in User Sections originally present in the generated

code. Users cannot add their own User Sections.
• Users should not move User Sections to some other places in the file. Indeed, on the next regeneration, the

User Section is generated at its original place in the file.
• In the specific context of MC, it is of utmost importance to understand that some User Sections may exist

only for specific configurations and that they may disappear – and so then would the code they contain – in
others. A good example of this is the /* USER CODE BEGIN M1 HALL_Update */ … /* USER CODE END
M1 HALL_Update */ section that allows users to add code in the Update event handler of the Timer used by
the HALL sensor. If the configuration of the project is changed to switch to an observer based Speed and
Position feedback component, this section of code is not be generated again and its content is lost.

To recover from such situations, it is strongly advised to backup or save (in a configuration management system
for instance) the code prior to regeneration.

UM2392
Anatomy of a motor control project

UM2392 - Rev 1 page 53/60

Revision history

Table 16. Document revision history

Date Version Changes

23-Oct-2018 1 Initial release.

UM2392

UM2392 - Rev 1 page 54/60

Contents

1 About this document .2

1.1 General information . 2

1.2 Terms and abbreviations . 3

2 STM32 motor control SDK overview. .4

2.1 Package content and installation. 4

2.2 Motor control application workflow . 4

2.3 STM32 cube firmware. 5

2.4 STM32 motor control firmware . 5

2.4.1 PMSM FOC library . 6

2.4.2 User interface library . 7

2.4.3 Motor control cockpit integration . 7

2.5 Examples . 7

2.6 Documentation . 7

3 The motor control firmware .8

3.1 Introduction to PMSM FOC drive . 8

3.1.1 Permanent magnet motors structure . 9

3.1.2 PMSM fundamental equations . 9

3.1.3 PID regulator theoretical background . 11

3.1.4 Regulator sampling time setting . 11

3.1.5 A priori determination of flux and torque current PI gains . 12

3.2 Motor control firmware subsystem . 12

3.3 Motor control firmware components . 14

3.3.1 Current sensing and PWM generation components . 16

3.3.2 Speed and position feedback components . 35

3.3.3 Bus voltage sensing components . 35

3.3.4 Temperature measurement component. 36

3.3.5 Power measurement component. 36

3.3.6 Drive Regulation components . 36

3.4 Motor control cockpit. 36

3.4.1 Motor control cockpit main source files . 36

UM2392
Contents

UM2392 - Rev 1 page 55/60

3.4.2 Tasks of the motor control subsystem . 37

3.4.3 Interrupts and real time aspects . 38

3.4.4 Configuration and parameters. 38

3.4.5 Fault handling . 39

3.4.6 ADC conversion for the application . 39

3.5 Motor control state machine. 40

4 SM-PMSM field-oriented control (FOC) .43

4.1 Measurement Units. 43

4.1.1 Rotor angle unit. 43

4.1.2 Rotor speed unit . 43

4.1.3 Current measurement unit. 44

4.1.4 Voltage measurement unit. 44

4.2 Motor control API. 44

4.2.1 Curr components . 45

4.2.2 Volt component . 45

4.2.3 Starting a Motor . 45

4.2.4 Stopping motor . 45

4.2.5 Programming a speed ramp . 46

4.2.6 Programming a torque ramp . 46

4.2.7 Setting the current reference. 46

4.2.8 Stopping an on-going speed ramp . 46

4.2.9 Retrieving the status of a ramp . 46

4.2.10 Retrieving the state of commands . 46

4.2.11 Retrieving the control mode of the motor. 47

4.2.12 Retrieving the direction of rotation of the motor . 47

4.2.13 Retrieving speed sensor reliability. 47

4.2.14 Retrieving average mechanical rotation speed of the motor . 47

4.2.15 Retrieving phase current amplitude. 47

4.2.16 Retrieving phase voltage amplitude . 47

4.2.17 Retrieving electrical angle of the motor . 47

4.2.18 Motor control fault acknowledgement . 47

4.2.19 Retrieving the latest motor control faults . 48

UM2392
Contents

UM2392 - Rev 1 page 56/60

4.2.20 Retrieving all motor control faults . 48

4.2.21 Retrieving the state of the motor control state machine. 48

4.3 Motor control low level API. 48

5 Anatomy of a motor control project .49

Revision history .54

UM2392
Contents

UM2392 - Rev 1 page 57/60

List of tables
Table 1. Terms and abbreviations . 3
Table 2. PWM and current feedback components . 17
Table 3. Three-shunt current reading, used resources (single drive, F103 LD/MD) . 19
Table 4. Three-shunt current reading, used resources (Dual drive,F103 HD, F2x, F4x) . 19
Table 5. Three-shunt current reading, used resources, single drive, STM32F302x6, STM32F302x8 22
Table 6. Three-shunt current reading, used resources, single drive, STM32F030x8 . 22
Table 7. Current through the shunt resistor . 23
Table 8. Single-shunt current reading, used resources (single drive, F103/F100 LD/MD, F0x) . 27
Table 9. Single-shunt current reading, used resources (single or dual drive, F103HD . 27
Table 10. Single-shunt current reading, used resources, single or dual drive, STM32F4xx. 28
Table 11. ICS current reading, used resources (single drive, F103 LD/MD) . 30
Table 12. ICS current reading, used resources (single or dual drive, F103 HD, F4xx) . 30
Table 13. Available Speed and Position Feedback Components. 35
Table 14. Detected fault . 39
Table 15. Motor state machine. 41
Table 16. Document revision history . 54

UM2392
List of tables

UM2392 - Rev 1 page 58/60

List of figures
Figure 1. Motor control firmware in its environment . 4
Figure 2. STM32 motor control SDK workflow . 5
Figure 3. STM32 motor control firmware architecture . 6
Figure 4. PMSM FOC Library features delivered as components . 6
Figure 5. Basic FOC algorithm structure, torque control . 8
Figure 6. Different Permanent Magnet Motor construction . 9
Figure 7. PMSM Reference Frame convention . 10
Figure 8. Block diagram of a PI controller . 12
Figure 9. Motor control software subsystem overview . 13
Figure 10. A component with its handle and its functions . 14
Figure 11. PMSM FOC Library features delivered as components . 15
Figure 12. Relationship between generic and implementing components. 15
Figure 13. Three-shunt topology hardware architecture . 18
Figure 14. PWM and ADC Synchronization . 19
Figure 15. Three-shunt topology hardware architecture . 20
Figure 16. PWM and ADC synchronization ADC rising edge external trigger . 21
Figure 17. PWM and ADC synchronization ADC falling edge external trigger . 21
Figure 18. Single-shunt hardware architecture . 22
Figure 19. Single shunt current reading. 23
Figure 20. Boundary between two space vector sectors . 24
Figure 21. Low modulation index . 24
Figure 22. Definition of noise parameters . 25
Figure 23. Regular region . 25
Figure 24. Boundary 1 . 26
Figure 25. Boundary 2 . 26
Figure 26. Boundary 3 . 27
Figure 27. ICS hardware architecture . 29
Figure 28. Stator currents sampling in ICS configuration . 29
Figure 29. Current sensing network and overcurrent protection with STM32F302/303 . 30
Figure 30. Current sensing network using external gains . 31
Figure 31. Current sensing network using internal gains plus filtering capacitor . 32
Figure 32. High Frequency Task execution . 38
Figure 33. Motor state machine . 41
Figure 34. Radians versus s16degrees . 43
Figure 35. Current sensing network . 44
Figure 36. Generated project disk layout . 49
Figure 37. EWARM project folder . 50
Figure 38. Keil project folder . 50
Figure 39. TrueSTUDIO project folder . 51
Figure 40. Generated sources folder. 52

UM2392
List of figures

UM2392 - Rev 1 page 59/60

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

UM2392

UM2392 - Rev 1 page 60/60

	1 About this document
	1.1 General information
	1.2 Terms and abbreviations

	2 STM32 motor control SDK overview
	2.1 Package content and installation
	2.2 Motor control application workflow
	2.3 STM32Cube firmware
	2.4 STM32 MC firmware
	2.4.1 PMSM FOC Library
	2.4.2 User Interface Library
	2.4.3 Motor control cockpit integration

	2.5 Examples
	2.6 Documentation

	3 The motor control firmware
	3.1 Introduction to PMSM FOC drive
	3.1.1 Permanent Magnet Motors structure
	3.1.2 PMSM fundamental equations
	3.1.3 PID regulator theoretical background
	3.1.4 Regulator sampling time setting
	3.1.5 A priori determination of flux and torque current PI gains

	3.2 Motor control firmware subsystem
	3.3 Motor control firmware components
	3.3.1 Current sensing and PWM generation components
	3.3.2 Speed and position feedback components
	3.3.3 Bus voltage sensing components
	3.3.4 Temperature measurement component
	3.3.5 Power Measurement component
	3.3.6 Drive Regulation components

	3.4 Motor control cockpit
	3.4.1 Motor Control Cockpit main source files
	3.4.2 Tasks of the motor control subsystem
	3.4.3 Interrupts and Real Time aspects
	3.4.4 Configuration and Parameters
	3.4.5 Fault handling
	3.4.6 ADC conversions for the Application

	3.5 Motor Control State Machine

	4 Application Programming Interfaces
	4.1 Measurement Units
	4.1.1 Rotor angle unit
	4.1.2 Rotor speed unit
	4.1.3 Current measurement unit
	4.1.4 Voltage measurement unit

	4.2 Motor control API
	4.2.1 Curr components
	4.2.2 Volt component
	4.2.3 Starting a motor
	4.2.4 Stopping motor
	4.2.5 Programming a speed ramp
	4.2.6 Programming a torque ramp
	4.2.7 Setting the current reference
	4.2.8 Stopping an on-going speed ramp
	4.2.9 Retrieving the status of a ramp
	4.2.10 Retrieving the state of commands
	4.2.11 Retrieving the control mode of the motor
	4.2.12 Retrieving the direction of rotation of the motor
	4.2.13 Retrieving speed sensor reliability
	4.2.14 Retrieving average mechanical rotation speed of the motor
	4.2.15 Retrieving phase current amplitude
	4.2.16 Retrieving phase voltage amplitude
	4.2.17 Retrieving electrical angle of the motor
	4.2.18 Motor control fault acknowledgement
	4.2.19 Retrieving the latest motor control faults
	4.2.20 Retrieving all motor control faults
	4.2.21 Retrieving the state of the motor control state machine

	4.3 Motor control low level API

	5 Anatomy of a motor control project
	Revision history

