/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * Copyright (C) 2019-2020 Emanuel FERU * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include // for abs() #include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" #include "comms.h" #include "eeprom.h" #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) #include "hd44780.h" #endif // Matlab includes and defines - from auto-code generation // ############################################################################### #include "BLDC_controller.h" /* Model's header file */ #include "rtwtypes.h" RT_MODEL rtM_Left_; /* Real-time model */ RT_MODEL rtM_Right_; /* Real-time model */ RT_MODEL *const rtM_Left = &rtM_Left_; RT_MODEL *const rtM_Right = &rtM_Right_; extern P rtP_Left; /* Block parameters (auto storage) */ DW rtDW_Left; /* Observable states */ ExtU rtU_Left; /* External inputs */ ExtY rtY_Left; /* External outputs */ P rtP_Right; /* Block parameters (auto storage) */ DW rtDW_Right; /* Observable states */ ExtU rtU_Right; /* External inputs */ ExtY rtY_Right; /* External outputs */ extern uint8_t errCode_Left; /* Global variable to handle Motor error codes */ extern uint8_t errCode_Right; /* Global variable to handle Motor error codes */ // ############################################################################### void SystemClock_Config(void); void poweroff(void); extern TIM_HandleTypeDef htim_left; extern TIM_HandleTypeDef htim_right; extern ADC_HandleTypeDef hadc1; extern ADC_HandleTypeDef hadc2; extern volatile adc_buf_t adc_buffer; #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) LCD_PCF8574_HandleTypeDef lcd; #endif extern I2C_HandleTypeDef hi2c2; #if defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) \ || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) extern UART_HandleTypeDef huart2; extern UART_HandleTypeDef huart3; static UART_HandleTypeDef huart; #endif #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) extern uint8_t LCDerrorFlag; #endif #ifdef VARIANT_TRANSPOTTER uint8_t nunchuk_connected = 0; float steering; int feedforward; void saveConfig(void); /* Virtual address defined by the user: 0xFFFF value is prohibited */ uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1337}; uint16_t VarDataTab[NB_OF_VAR] = {0}; uint16_t VarValue = 0; uint16_t saveValue = 0; uint16_t counter = 0; #else uint8_t nunchuk_connected = 1; uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1300}; // Dummy address to avoid warnings #endif #if defined(CONTROL_ADC) && defined(ADC_PROTECT_ENA) static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection #endif static uint8_t timeoutFlagADC = 0; // Timeout Flag for for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data) #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) #ifdef CONTROL_IBUS static uint16_t ibus_chksum; static uint16_t ibus_captured_value[IBUS_NUM_CHANNELS]; typedef struct{ uint8_t start; uint8_t type; uint8_t channels[IBUS_NUM_CHANNELS*2]; uint8_t checksuml; uint8_t checksumh; } Serialcommand; #else typedef struct{ uint16_t start; int16_t steer; int16_t speed; uint16_t checksum; } Serialcommand; #endif static volatile Serialcommand command; static int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command #endif static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) typedef struct{ uint16_t start; int16_t cmd1; int16_t cmd2; int16_t speedR; int16_t speedL; int16_t speedR_meas; int16_t speedL_meas; int16_t batVoltage; int16_t boardTemp; uint16_t checksum; } SerialFeedback; static SerialFeedback Feedback; #endif #ifdef SUPPORT_BUTTONS static uint8_t button1, button2; #endif uint8_t ctrlModReqRaw = CTRL_MOD_REQ; uint8_t ctrlModReq = CTRL_MOD_REQ; // Final control mode request static int16_t speed; // local variable for speed. -1000 to 1000 #ifndef VARIANT_TRANSPOTTER static int cmd1; // normalized input value. -1000 to 1000 static int cmd2; // normalized input value. -1000 to 1000 static int16_t steer; // local variable for steering. -1000 to 1000 static int16_t steerRateFixdt; // local fixed-point variable for steering rate limiter static int16_t speedRateFixdt; // local fixed-point variable for speed rate limiter static int32_t steerFixdt; // local fixed-point variable for steering low-pass filter static int32_t speedFixdt; // local fixed-point variable for speed low-pass filter #endif static MultipleTap MultipleTapBreak; // define multiple tap functionality for the Break pedal static int16_t speedAvg; // average measured speed static int16_t speedAvgAbs; // average measured speed in absolute extern volatile int pwml; // global variable for pwm left. -1000 to 1000 extern volatile int pwmr; // global variable for pwm right. -1000 to 1000 extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t enable; // global variable for motor enable extern volatile uint32_t timeout; // global variable for timeout extern int16_t batVoltage; // global variable for battery voltage static uint32_t inactivity_timeout_counter; static uint32_t main_loop_counter; extern uint8_t nunchuk_data[6]; #ifdef CONTROL_PPM extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1]; #endif void poweroff(void) { // if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons buzzerPattern = 0; enable = 0; consoleLog("-- Motors disabled --\r\n"); for (int i = 0; i < 8; i++) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET); while(1) {} // } } int main(void) { HAL_Init(); __HAL_RCC_AFIO_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); SystemClock_Config(); __HAL_RCC_DMA1_CLK_DISABLE(); MX_GPIO_Init(); MX_TIM_Init(); MX_ADC1_Init(); MX_ADC2_Init(); HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET); HAL_ADC_Start(&hadc1); HAL_ADC_Start(&hadc2); // Matlab Init // ############################################################################### /* Set BLDC controller parameters */ rtP_Left.b_selPhaABCurrMeas = 1; // Left motor measured current phases = {iA, iB} -> do NOT change rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL; rtP_Left.b_diagEna = DIAG_ENA; rtP_Left.i_max = (I_MOT_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.n_max = N_MOT_MAX << 4; // fixdt(1,16,4) rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA; rtP_Left.id_fieldWeakMax = (FIELD_WEAK_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.a_phaAdvMax = PHASE_ADV_MAX << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4) rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters rtP_Right.b_selPhaABCurrMeas = 0; // Left motor measured current phases = {iB, iC} -> do NOT change /* Pack LEFT motor data into RTM */ rtM_Left->defaultParam = &rtP_Left; rtM_Left->dwork = &rtDW_Left; rtM_Left->inputs = &rtU_Left; rtM_Left->outputs = &rtY_Left; /* Pack RIGHT motor data into RTM */ rtM_Right->defaultParam = &rtP_Right; rtM_Right->dwork = &rtDW_Right; rtM_Right->inputs = &rtU_Right; rtM_Right->outputs = &rtY_Right; /* Initialize BLDC controllers */ BLDC_controller_initialize(rtM_Left); BLDC_controller_initialize(rtM_Right); // ############################################################################### for (int i = 8; i >= 0; i--) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } buzzerFreq = 0; HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_SET); #ifdef VARIANT_TRANSPOTTER int lastDistance = 0; enable = 1; uint8_t checkRemote = 0; HAL_FLASH_Unlock(); /* EEPROM Init */ EE_Init(); EE_ReadVariable(VirtAddVarTab[0], &saveValue); HAL_FLASH_Lock(); float setDistance = saveValue / 1000.0; if (setDistance < 0.2) { setDistance = 1.0; } #endif #ifdef CONTROL_PPM PPM_Init(); #endif #ifdef CONTROL_NUNCHUK I2C_Init(); Nunchuk_Init(); #endif #if defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) UART2_Init(); huart = huart2; #endif #if defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) UART3_Init(); huart = huart3; #endif #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); #endif #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) I2C_Init(); HAL_Delay(50); lcd.pcf8574.PCF_I2C_ADDRESS = 0x27; lcd.pcf8574.PCF_I2C_TIMEOUT = 5; lcd.pcf8574.i2c = hi2c2; lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2; lcd.type = TYPE0; if(LCD_Init(&lcd)!=LCD_OK){ // error occured //TODO while(1); } LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 0); #ifdef VARIANT_TRANSPOTTER LCD_WriteString(&lcd, "TranspOtter V2.1"); #else LCD_WriteString(&lcd, "Hover V2.0"); #endif LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Initializing..."); #endif #if defined(VARIANT_TRANSPOTTER) && defined(SUPPORT_LCD) LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Bat:"); LCD_SetLocation(&lcd, 8, 1); LCD_WriteString(&lcd, "V"); LCD_SetLocation(&lcd, 15, 1); LCD_WriteString(&lcd, "A"); LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:"); LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m("); LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)"); #endif int16_t lastSpeedL = 0, lastSpeedR = 0; int16_t speedL = 0, speedR = 0; int32_t board_temp_adcFixdt = adc_buffer.temp << 20; // Fixed-point filter output initialized with current ADC converted to fixed-point int16_t board_temp_adcFilt = adc_buffer.temp; int16_t board_temp_deg_c; while(1) { HAL_Delay(DELAY_IN_MAIN_LOOP); //delay in ms #ifdef VARIANT_TRANSPOTTER if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } shortBeep(5); HAL_Delay(300); if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } longBeep(5); HAL_Delay(350); poweroff(); } else { setDistance += 0.25; if (setDistance > 2.6) { setDistance = 0.5; } shortBeep(setDistance / 0.25); saveValue = setDistance * 1000; saveConfig(); } } #ifdef GAMETRAK_CONNECTION_NORMAL uint16_t distance = CLAMP((adc_buffer.l_rx2) - 180, 0, 4095); steering = (adc_buffer.l_tx2 - 2048) / 2048.0; #endif #ifdef GAMETRAK_CONNECTION_ALTERNATE uint16_t distance = CLAMP((adc_buffer.l_tx2) - 180, 0, 4095); steering = (adc_buffer.l_rx2 - 2048) / 2048.0; #endif feedforward = ((distance - (int)(setDistance * 1345))); if (nunchuk_connected == 0) { speedL = speedL * 0.8f + (CLAMP(feedforward + ((steering)*((float)MAX(ABS(feedforward), 50)) * ROT_P), -850, 850) * -0.2f); speedR = speedR * 0.8f + (CLAMP(feedforward - ((steering)*((float)MAX(ABS(feedforward), 50)) * ROT_P), -850, 850) * -0.2f); if ((speedL < lastSpeedL + 50 && speedL > lastSpeedL - 50) && (speedR < lastSpeedR + 50 && speedR > lastSpeedR - 50)) { if (distance - (int)(setDistance * 1345) > 0) { enable = 1; } if (distance - (int)(setDistance * 1345) > -300) { #ifdef INVERT_R_DIRECTION pwmr = speedR; #endif #ifndef INVERT_R_DIRECTION pwmr = -speedR; #endif #ifdef INVERT_L_DIRECTION pwml = -speedL; #endif #ifndef INVERT_L_DIRECTION pwml = speedL; #endif if (checkRemote) { if (!HAL_GPIO_ReadPin(LED_PORT, LED_PIN)) { //enable = 1; } else { enable = 0; } } } else { enable = 0; } } lastSpeedL = speedL; lastSpeedR = speedR; timeout = 0; } #endif #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) if (nunchuk_connected != 0) { Nunchuk_Read(); cmd1 = CLAMP((nunchuk_data[0] - 127) * 8, INPUT_MIN, INPUT_MAX); // x - axis. Nunchuk joystick readings range 30 - 230 cmd2 = CLAMP((nunchuk_data[1] - 128) * 8, INPUT_MIN, INPUT_MAX); // y - axis #ifdef SUPPORT_BUTTONS button1 = (uint8_t)nunchuk_data[5] & 1; button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1; #endif } #endif #ifdef CONTROL_PPM cmd1 = CLAMP((ppm_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); cmd2 = CLAMP((ppm_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); #ifdef SUPPORT_BUTTONS button1 = ppm_captured_value[5] > INPUT_MID; button2 = 0; #endif // float scale = ppm_captured_value[2] / 1000.0f; // not used for now, uncomment if needed #endif #ifdef CONTROL_ADC // ADC values range: 0-4095, see ADC-calibration in config.h #ifdef ADC1_MID_POT cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MID) * INPUT_MAX / (ADC1_MAX - ADC1_MID), 0, INPUT_MAX) -CLAMP((ADC1_MID - adc_buffer.l_tx2) * INPUT_MAX / (ADC1_MID - ADC1_MIN), 0, INPUT_MAX); // ADC1 #else cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MIN) * INPUT_MAX / (ADC1_MAX - ADC1_MIN), 0, INPUT_MAX); // ADC1 #endif #ifdef ADC2_MID_POT cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MID) * INPUT_MAX / (ADC2_MAX - ADC2_MID), 0, INPUT_MAX) -CLAMP((ADC2_MID - adc_buffer.l_rx2) * INPUT_MAX / (ADC2_MID - ADC2_MIN), 0, INPUT_MAX); // ADC2 #else cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MIN) * INPUT_MAX / (ADC2_MAX - ADC2_MIN), 0, INPUT_MAX); // ADC2 #endif #ifdef ADC_PROTECT_ENA if (adc_buffer.l_tx2 >= (ADC1_MIN - ADC_PROTECT_THRESH) && adc_buffer.l_tx2 <= (ADC1_MAX + ADC_PROTECT_THRESH) && adc_buffer.l_rx2 >= (ADC2_MIN - ADC_PROTECT_THRESH) && adc_buffer.l_rx2 <= (ADC2_MAX + ADC_PROTECT_THRESH)) { if (timeoutFlagADC) { // Check for previous timeout flag if (timeoutCntADC-- <= 0) // Timeout de-qualification timeoutFlagADC = 0; // Timeout flag cleared } else { timeoutCntADC = 0; // Reset the timeout counter } } else { if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification timeoutFlagADC = 1; // Timeout detected timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value } } if (timeoutFlagADC) { // In case of timeout bring the system to a Safe State ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way cmd1 = 0; cmd2 = 0; } else { ctrlModReq = ctrlModReqRaw; // Follow the Mode request } #endif // use ADCs as button inputs: #ifdef SUPPORT_BUTTONS button1 = (uint8_t)(adc_buffer.l_tx2 > 2000); // ADC1 button2 = (uint8_t)(adc_buffer.l_rx2 > 2000); // ADC2 #endif timeout = 0; #endif #if defined CONTROL_SERIAL_USART2 || defined CONTROL_SERIAL_USART3 // Handle received data validity, timeout and fix out-of-sync if necessary #ifdef CONTROL_IBUS ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND; for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) { ibus_chksum -= command.channels[i]; } if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == (uint16_t)((command.checksumh << 8) + command.checksuml)) { if (timeoutFlagSerial) { // Check for previous timeout flag if (timeoutCntSerial-- <= 0) // Timeout de-qualification timeoutFlagSerial = 0; // Timeout flag cleared } else { for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) { ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 } cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); command.start = 0xFF; // Change the Start Frame for timeout detection in the next cycle timeoutCntSerial = 0; // Reset the timeout counter } } else { if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlagSerial = 1; // Timeout detected timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value } // Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA if (main_loop_counter % 25 == 0 && command.start != IBUS_LENGTH && command.start != 0xFF) { HAL_UART_DMAStop(&huart); HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); command.start = 0xFF; // Change the Start Frame to avoid entering again here if no data is received } } #else if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) { if (timeoutFlagSerial) { // Check for previous timeout flag if (timeoutCntSerial-- <= 0) // Timeout de-qualification timeoutFlagSerial = 0; // Timeout flag cleared } else { cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX); cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX); command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle timeoutCntSerial = 0; // Reset the timeout counter } } else { if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlagSerial = 1; // Timeout detected timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value } // Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA if (main_loop_counter % 25 == 0 && command.start != START_FRAME && command.start != 0xFFFF) { HAL_UART_DMAStop(&huart); HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); command.start = 0xFFFF; // Change the Start Frame to avoid entering again here if no data is received } } #endif if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way cmd1 = 0; cmd2 = 0; } else { ctrlModReq = ctrlModReqRaw; // Follow the Mode request } timeout = 0; #endif // Calculate measured average speed. The minus sign (-) is beacause motors spin in opposite directions #if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot + rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot + rtY_Right.n_mot) / 2; #endif // Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1) if ((SPEED_COEFFICIENT & (1 << 16)) >> 16) { speedAvg = -speedAvg; } speedAvgAbs = abs(speedAvg); #ifndef VARIANT_TRANSPOTTER // ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) ####### if (enable == 0 && (!errCode_Left && !errCode_Right) && (cmd1 > -50 && cmd1 < 50) && (cmd2 > -50 && cmd2 < 50)){ shortBeep(6); // make 2 beeps indicating the motor enable shortBeep(4); HAL_Delay(100); enable = 1; // enable motors } // ####### VARIANT_HOVERCAR ####### #ifdef VARIANT_HOVERCAR // Calculate speed Blend, a number between [0, 1] in fixdt(0,16,15) uint16_t speedBlend; speedBlend = (uint16_t)(((CLAMP(speedAvgAbs,30,90) - 30) << 15) / 60); // speedBlend [0,1] is within [30 rpm, 90rpm] // Check if Hovercar is physically close to standstill to enable Double tap detection on Brake pedal for Reverse functionality if (speedAvgAbs < 20) { multipleTapDet(cmd1, HAL_GetTick(), &MultipleTapBreak); // Break pedal in this case is "cmd1" variable } // If Brake pedal (cmd1) is pressed, bring to 0 also the Throttle pedal (cmd2) to avoid "Double pedal" driving if (cmd1 > 20) { cmd2 = (int16_t)((cmd2 * speedBlend) >> 15); } // Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving by Brake pedal) if (speedAvg > 0) { cmd1 = (int16_t)((-cmd1 * speedBlend) >> 15); } else { cmd1 = (int16_t)(( cmd1 * speedBlend) >> 15); } #endif // ####### LOW-PASS FILTER ####### rateLimiter16(cmd1, RATE, &steerRateFixdt); rateLimiter16(cmd2, RATE, &speedRateFixdt); filtLowPass32(steerRateFixdt >> 4, FILTER, &steerFixdt); filtLowPass32(speedRateFixdt >> 4, FILTER, &speedFixdt); steer = (int16_t)(steerFixdt >> 20); // convert fixed-point to integer speed = (int16_t)(speedFixdt >> 20); // convert fixed-point to integer // ####### VARIANT_HOVERCAR ####### #ifdef VARIANT_HOVERCAR if (!MultipleTapBreak.b_multipleTap) { // Check driving direction speed = steer + speed; // Forward driving } else { speed = steer - speed; // Reverse driving } #endif // ####### MIXER ####### // speedR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), -1000, 1000); // speedL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), -1000, 1000); mixerFcn(speed << 4, steer << 4, &speedR, &speedL); // This function implements the equations above #ifdef ADDITIONAL_CODE ADDITIONAL_CODE; #endif // ####### SET OUTPUTS (if the target change is less than +/- 50) ####### if ((speedL > lastSpeedL-50 && speedL < lastSpeedL+50) && (speedR > lastSpeedR-50 && speedR < lastSpeedR+50) && timeout < TIMEOUT) { #ifdef INVERT_R_DIRECTION pwmr = speedR; #else pwmr = -speedR; #endif #ifdef INVERT_L_DIRECTION pwml = -speedL; #else pwml = speedL; #endif } #endif lastSpeedL = speedL; lastSpeedR = speedR; #ifdef VARIANT_TRANSPOTTER if (timeout > TIMEOUT) { pwml = 0; pwmr = 0; enable = 0; #ifdef SUPPORT_LCD LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:"); LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m("); LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)"); #endif HAL_Delay(1000); nunchuk_connected = 0; } if ((distance / 1345.0) - setDistance > 0.5 && (lastDistance / 1345.0) - setDistance > 0.5) { // Error, robot too far away! enable = 0; longBeep(5); #ifdef SUPPORT_LCD LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Emergency Off!"); LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Keeper too fast."); #endif poweroff(); } #ifdef SUPPORT_NUNCHUK if (counter % 500 == 0) { if (nunchuk_connected == 0 && enable == 0) { if (Nunchuk_Ping()) { HAL_Delay(500); Nunchuk_Init(); #ifdef SUPPORT_LCD LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Nunchuk Control"); #endif timeout = 0; HAL_Delay(1000); nunchuk_connected = 1; } } } #endif #ifdef SUPPORT_LCD if (counter % 100 == 0) { if (LCDerrorFlag == 1 && enable == 0) { } else { if (nunchuk_connected == 0) { LCD_SetLocation(&lcd, 4, 0); LCD_WriteFloat(&lcd,distance/1345.0,2); LCD_SetLocation(&lcd, 10, 0); LCD_WriteFloat(&lcd,setDistance,2); } LCD_SetLocation(&lcd, 4, 1); LCD_WriteFloat(&lcd,batVoltage, 1); LCD_SetLocation(&lcd, 11, 1); //LCD_WriteFloat(&lcd,MAX(ABS(currentR), ABS(currentL)),2); } } #endif counter++; #endif // ####### CALC BOARD TEMPERATURE ####### filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt); board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C; if (main_loop_counter % 25 == 0) { // Send data periodically // ####### DEBUG SERIAL OUT ####### #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) #ifdef CONTROL_ADC setScopeChannel(0, (int16_t)adc_buffer.l_tx2); // 1: ADC1 setScopeChannel(1, (int16_t)adc_buffer.l_rx2); // 2: ADC2 #endif setScopeChannel(2, (int16_t)speedR); // 3: output command: [-1000, 1000] setScopeChannel(3, (int16_t)speedL); // 4: output command: [-1000, 1000] setScopeChannel(4, (int16_t)adc_buffer.batt1); // 5: for battery voltage calibration setScopeChannel(5, (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC)); // 6: for verifying battery voltage calibration setScopeChannel(6, (int16_t)board_temp_adcFilt); // 7: for board temperature calibration setScopeChannel(7, (int16_t)board_temp_deg_c); // 8: for verifying board temperature calibration consoleScope(); // ####### FEEDBACK SERIAL OUT ####### #elif defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) if(UART_DMA_CHANNEL->CNDTR == 0) { Feedback.start = (uint16_t)START_FRAME; Feedback.cmd1 = (int16_t)cmd1; Feedback.cmd2 = (int16_t)cmd2; Feedback.speedR = (int16_t)speedR; Feedback.speedL = (int16_t)speedL; Feedback.speedR_meas = (int16_t)rtY_Left.n_mot; Feedback.speedL_meas = (int16_t)rtY_Right.n_mot; Feedback.batVoltage = (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); Feedback.boardTemp = (int16_t)board_temp_deg_c; Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR ^ Feedback.speedL ^ Feedback.speedR_meas ^ Feedback.speedL_meas ^ Feedback.batVoltage ^ Feedback.boardTemp); UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN; UART_DMA_CHANNEL->CNDTR = sizeof(Feedback); UART_DMA_CHANNEL->CMAR = (uint32_t)&Feedback; UART_DMA_CHANNEL->CCR |= DMA_CCR_EN; } #endif } HAL_GPIO_TogglePin(LED_PORT, LED_PIN); // ####### POWEROFF BY POWER-BUTTON ####### if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; // disable motors while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger) __HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags } else { poweroff(); // release power-latch } } // ####### BEEP AND EMERGENCY POWEROFF ####### if (errCode_Left || errCode_Right) { // disable motors and beep in case of Motor error - fast beep enable = 0; buzzerFreq = 8; buzzerPattern = 1; } else if ((TEMP_POWEROFF_ENABLE && board_temp_deg_c >= TEMP_POWEROFF && speedAvgAbs < 20) || (batVoltage < BAT_LOW_DEAD && speedAvgAbs < 20)) { // poweroff before mainboard burns OR low bat 3 poweroff(); } else if (TEMP_WARNING_ENABLE && board_temp_deg_c >= TEMP_WARNING) { // beep if mainboard gets hot buzzerFreq = 4; buzzerPattern = 1; } else if (batVoltage < BAT_LOW_LVL1 && batVoltage >= BAT_LOW_LVL2 && BAT_LOW_LVL1_ENABLE) { // low bat 1: slow beep buzzerFreq = 5; buzzerPattern = 42; } else if (batVoltage < BAT_LOW_LVL2 && batVoltage >= BAT_LOW_DEAD && BAT_LOW_LVL2_ENABLE) { // low bat 2: fast beep buzzerFreq = 5; buzzerPattern = 6; } else if (timeoutFlagADC || timeoutFlagSerial) { // beep in case of ADC or Serial timeout - fast beep buzzerFreq = 24; buzzerPattern = 1; } else if (BEEPS_BACKWARD && ((speed < -50 && speedAvg < 0) || MultipleTapBreak.b_multipleTap)) { // backward beep buzzerFreq = 5; buzzerPattern = 1; } else { // do not beep buzzerFreq = 0; buzzerPattern = 0; } // ####### INACTIVITY TIMEOUT ####### if (abs(speedL) > 50 || abs(speedR) > 50) { inactivity_timeout_counter = 0; } else { inactivity_timeout_counter ++; } if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms poweroff(); } main_loop_counter++; timeout++; } } #ifdef VARIANT_TRANSPOTTER void saveConfig() { HAL_FLASH_Unlock(); EE_WriteVariable(VirtAddVarTab[0], saveValue); HAL_FLASH_Lock(); } #endif void longBeep(uint8_t freq){ buzzerFreq = freq; HAL_Delay(500); buzzerFreq = 0; } void shortBeep(uint8_t freq){ buzzerFreq = freq; HAL_Delay(100); buzzerFreq = 0; } // =========================================================== /* Low pass filter fixed-point 32 bits: fixdt(1,32,20) * Max: 2047.9375 * Min: -2048 * Res: 0.0625 * * Inputs: u = int16 * Outputs: y = fixdt(1,32,20) * Parameters: coef = fixdt(0,16,16) = [0,65535U] * * Example: * If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point) * filtLowPass16(u, 52429, &y); * yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits */ void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) { int32_t tmp; tmp = (int16_t)(u << 4) - (*y >> 16); tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *y = coef * tmp + (*y); } // =========================================================== /* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL); * Inputs: rtu_speed, rtu_steer = fixdt(1,16,4) * Outputs: rty_speedR, rty_speedL = int16_t * Parameters: SPEED_COEFFICIENT, STEER_COEFFICIENT = fixdt(0,16,14) */ void mixerFcn(int16_t rtu_speed, int16_t rtu_steer, int16_t *rty_speedR, int16_t *rty_speedL) { int16_t prodSpeed; int16_t prodSteer; int32_t tmp; prodSpeed = (int16_t)((rtu_speed * (int16_t)SPEED_COEFFICIENT) >> 14); prodSteer = (int16_t)((rtu_steer * (int16_t)STEER_COEFFICIENT) >> 14); tmp = prodSpeed - prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedR = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedR = CLAMP(*rty_speedR, INPUT_MIN, INPUT_MAX); tmp = prodSpeed + prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedL = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedL = CLAMP(*rty_speedL, INPUT_MIN, INPUT_MAX); } // =========================================================== /* rateLimiter16(int16_t u, int16_t rate, int16_t *y); * Inputs: u = int16 * Outputs: y = fixdt(1,16,4) * Parameters: rate = fixdt(1,16,4) = [0, 32767] Do NOT make rate negative (>32767) */ void rateLimiter16(int16_t u, int16_t rate, int16_t *y) { int16_t q0; int16_t q1; q0 = (u << 4) - *y; if (q0 > rate) { q0 = rate; } else { q1 = -rate; if (q0 < q1) { q0 = q1; } } *y = q0 + *y; } // =========================================================== /* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) * This function detects multiple tap presses, such as double tapping, triple tapping, etc. * Inputs: u = int16_t (input signal); timeNow = uint32_t (current time) * Outputs: x->b_multipleTap (get the output here) */ void multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) { uint8_t b_timeout; uint8_t b_hyst; uint8_t b_pulse; uint8_t z_pulseCnt; uint8_t z_pulseCntRst; uint32_t t_time; // Detect hysteresis if (x->b_hysteresis) { b_hyst = (u > MULTIPLE_TAP_LO); } else { b_hyst = (u > MULTIPLE_TAP_HI); } // Detect pulse b_pulse = (b_hyst != x->b_hysteresis); // Save time when first pulse is detected if (b_hyst && b_pulse && (x->z_pulseCntPrev == 0)) { t_time = timeNow; } else { t_time = x->t_timePrev; } // Create timeout boolean b_timeout = (timeNow - t_time > MULTIPLE_TAP_TIMEOUT); // Create pulse counter if ((!b_hyst) && (x->z_pulseCntPrev == 0)) { z_pulseCnt = 0U; } else { z_pulseCnt = b_pulse; } // Reset counter if we detected complete tap presses OR there is a timeout if ((x->z_pulseCntPrev >= MULTIPLE_TAP_NR) || b_timeout) { z_pulseCntRst = 0U; } else { z_pulseCntRst = x->z_pulseCntPrev; } z_pulseCnt = z_pulseCnt + z_pulseCntRst; // Check if complete tap presses are detected AND no timeout if ((z_pulseCnt >= MULTIPLE_TAP_NR) && (!b_timeout)) { x->b_multipleTap = !x->b_multipleTap; // Toggle output } // Update states x->z_pulseCntPrev = z_pulseCnt; x->b_hysteresis = b_hyst; x->t_timePrev = t_time; } // =========================================================== /** System Clock Configuration */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; HAL_RCC_OscConfig(&RCC_OscInitStruct); /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; // PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); }