#pragma once #include "stm32f1xx_hal.h" // ############################### GENERAL SETTINGS ############################### // For variant selection, check platformio.ini // or define the desired build variant here if you want to use make in console // or use VARIANT environment variable for example like "make -e VARIANT=VARIANT_NUNCHUK" // Only one at a time, choose wisely ;-) #if !defined(PLATFORMIO) //#define VARIANT_ADC // Variant for control via ADC input //#define VARIANT_USART // Variant for Serial control via USART3 input //#define VARIANT_NUNCHUK // Variant for Nunchuk controlled vehicle build //#define VARIANT_PPM // Variant for RC-Remote with PPM-Sum Signal //#define VARIANT_IBUS // Variant for RC-Remotes with FLYSKY IBUS //#define VARIANT_HOVERCAR // Variant for HOVERCAR build //#define VARIANT_TRANSPOTTER // Variant for TRANSPOTTER build https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter https://hackaday.io/project/161891-transpotter-ng #endif #define INACTIVITY_TIMEOUT 8 // Minutes of not driving until poweroff. it is not very precise. #define BEEPS_BACKWARD 1 // 0 or 1a // ########################### END OF GENERAL SETTINGS ############################ // ############################### BATTERY ############################### /* Battery voltage calibration: connect power source. * see How to calibrate. * Write debug output value nr 5 to BAT_CALIB_ADC. make and flash firmware. * Then you can verify voltage on debug output value 6 (to get calibrated voltage multiplied by 100). */ #define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16 #define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). In this case 43.00 V * 100 = 4300 #define BAT_CALIB_ADC 1492 // adc-value measured by mainboard (value nr 5 on UART debug output) #define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s #define BAT_LOW_LVL1_ENABLE 0 // to beep or not to beep, 1 or 0 #define BAT_LOW_LVL2_ENABLE 1 // to beep or not to beep, 1 or 0 #define BAT_LOW_LVL1 (360 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // gently beeps at this voltage level. [V*100/cell]. In this case 3.60 V/cell #define BAT_LOW_LVL2 (350 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // your battery is almost empty. Charge now! [V*100/cell]. In this case 3.50 V/cell #define BAT_LOW_DEAD (337 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE // undervoltage poweroff. (while not driving) [V*100/cell]. In this case 3.37 V/cell // ######################## END OF BATTERY ############################### // ############################### TEMPERATURE ############################### /* Board overheat detection: the sensor is inside the STM/GD chip. * It is very inaccurate without calibration (up to 45°C). So only enable this funcion after calibration! * Let your board cool down. * see = 0, VAL_fixedPoint = VAL_floatingPoint * 2^14 * If VAL_floatingPoint < 0, VAL_fixedPoint = 2^16 + floor(VAL_floatingPoint * 2^14). */ #define DEFAULT_FILTER 6553 // Default for FILTER 0.1f [-] lower value == softer filter [0, 65535] = [0.0 - 1.0]. #define DEFAULT_SPEED_COEFFICIENT 16384 // Default for SPEED_COEFFICIENT 1.0f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14 #define DEFAULT_STEER_COEFFICIENT 8192 // Defualt for STEER_COEFFICIENT 0.5f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 8192 = 0.5 * 2^14. If you do not want any steering, set it to 0. // ######################### END OF VARIANT DEFAULT SETTINGS ########################## // ################################# VARIANT_ADC SETTINGS ############################ #ifdef VARIANT_ADC /* CONTROL VIA TWO POTENTIOMETERS * ADC-calibration to cover the full poti-range: * Connect potis to left sensor board cable (0 to 3.3V) (do NOT use the red 15V wire in the cable!). see . * Turn the potis to minimum position, write value 1 to ADC1_MIN and value 2 to ADC2_MIN * Turn the potis to maximum position, write value 1 to ADC1_MAX and value 2 to ADC2_MAX * For middle resting potis: Let the potis in the middle resting position, write value 1 to ADC1_MID and value 2 to ADC2_MID * Make, flash and test it. */ #define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2, FEEDBACK_SERIAL_USART2, DEBUG_SERIAL_USART2! // #define ADC_PROTECT_ENA // ADC Protection Enable flag. Use this flag to make sure the ADC is protected when GND or Vcc wire is disconnected #define ADC_PROTECT_TIMEOUT 30 // ADC Protection: number of wrong / missing input commands before safety state is taken #define ADC_PROTECT_THRESH 400 // ADC Protection threshold below/above the MIN/MAX ADC values // #define ADC1_MID_POT // ADC1 middle resting poti: comment-out if NOT a middle resting poti #define ADC1_MIN 0 // min ADC1-value while poti at minimum-position (0 - 4095) #define ADC1_MID 2048 // mid ADC1-value while poti at minimum-position (ADC1_MIN - ADC1_MAX) #define ADC1_MAX 4095 // max ADC1-value while poti at maximum-position (0 - 4095) // #define ADC2_MID_POT // ADC2 middle resting poti: comment-out if NOT a middle resting poti #define ADC2_MIN 0 // min ADC2-value while poti at minimum-position (0 - 4095) #define ADC2_MID 2048 // mid ADC2-value while poti at minimum-position (ADC2_MIN - ADC2_MAX) #define ADC2_MAX 4095 // max ADC2-value while poti at maximum-position (0 - 4095) #endif // ############################# END OF VARIANT_ADC SETTINGS ######################### // ############################ VARIANT_USART SETTINGS ############################ #ifdef VARIANT_USART // #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino // #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! //#define CONTROL_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! For Arduino control check the hoverSerial.ino //#define FEEDBACK_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! #endif // ######################## END OF VARIANT_USART SETTINGS ######################### // ################################# VARIANT_NUNCHUK SETTINGS ############################ #ifdef VARIANT_NUNCHUK /* left sensor board cable. USART3 * keep cable short, use shielded cable, use ferrits, stabalize voltage in nunchuk, * use the right one of the 2 types of nunchuks, add i2c pullups. * use original nunchuk. most clones does not work very well. * Recommendation: Nunchuk Breakout Board https://github.com/Jan--Henrik/hoverboard-breakout */ #define CONTROL_NUNCHUK // use nunchuk as input. disable FEEDBACK_SERIAL_USART3, DEBUG_SERIAL_USART3! // # maybe good for ARMCHAIR # #define FILTER 3276 // 0.05f #define SPEED_COEFFICIENT 8192 // 0.5f #define STEER_COEFFICIENT 62259 // -0.2f #endif // ############################# END OF VARIANT_NUNCHUK SETTINGS ######################### // ################################# VARIANT_PPM SETTINGS ############################## #ifdef VARIANT_PPM /* ###### CONTROL VIA RC REMOTE ###### * left sensor board cable. Channel 1: steering, Channel 2: speed. * https://gist.github.com/peterpoetzi/1b63a4a844162196613871767189bd05 */ #define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2! #define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used. #endif // ############################# END OF VARIANT_PPM SETTINGS ############################ // ################################# VARIANT_IBUS SETTINGS ############################## #ifdef VARIANT_IBUS /* CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL * Connected to Left sensor board cable. Channel 1: steering, Channel 2: speed. */ #define CONTROL_IBUS // use IBUS as input #define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used. #define IBUS_LENGTH 0x20 #define IBUS_COMMAND 0x40 #undef USART2_BAUD #define USART2_BAUD 115200 #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! #endif // ############################# END OF VARIANT_IBUS SETTINGS ############################ // ############################ VARIANT_HOVERCAR SETTINGS ############################ #ifdef VARIANT_HOVERCAR #define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2, FEEDBACK_SERIAL_USART2, DEBUG_SERIAL_USART2! #define ADC_PROTECT_ENA // ADC Protection Enable flag. Use this flag to make sure the ADC is protected when GND or Vcc wire is disconnected #define ADC_PROTECT_TIMEOUT 30 // ADC Protection: number of wrong / missing input commands before safety state is taken #define ADC_PROTECT_THRESH 400 // ADC Protection threshold below/above the MIN/MAX ADC values #define ADC1_MIN 1000 // min ADC1-value while poti at minimum-position (0 - 4095) #define ADC1_MAX 2500 // max ADC1-value while poti at maximum-position (0 - 4095) #define ADC2_MIN 500 // min ADC2-value while poti at minimum-position (0 - 4095) #define ADC2_MAX 2200 // max ADC2-value while poti at maximum-position (0 - 4095) #define SPEED_COEFFICIENT 16384 // 1.0f #define STEER_COEFFICIENT 0 // 0.0f //#define INVERT_R_DIRECTION // Invert rotation of right motor //#define INVERT_L_DIRECTION // Invert rotation of left motor #endif // ######################## END OF VARIANT_HOVERCAR SETTINGS ######################### // ################################# VARIANT_TRANSPOTTER SETTINGS ############################ //TODO ADD VALIDATION #ifdef VARIANT_TRANSPOTTER #define CONTROL_GAMETRAK //#define SUPPORT_LCD //#define SUPPORT_NUNCHUK #define GAMETRAK_CONNECTION_NORMAL // for normal wiring according to the wiki instructions //#define GAMETRAK_CONNECTION_ALTERNATE // use this define instead if you messed up the gametrak ADC wiring (steering is speed, and length of the wire is steering) #define ROT_P 1.2 // P coefficient for the direction controller. Positive / Negative values to invert gametrak steering direction. // during nunchuk control (only relevant when activated) #define SPEED_COEFFICIENT 14746 // 0.9f - higher value == stronger. 0.0 to ~2.0? #define STEER_COEFFICIENT 8192 // 0.5f - higher value == stronger. if you do not want any steering, set it to 0.0; 0.0 to 1.0 #endif // ############################# END OF VARIANT_TRANSPOTTER SETTINGS ######################## // ############################### MOTOR CONTROL ######################### /* GENERAL NOTES: * 1. The parameters are over-writing the default motor parameters. For all the available parameters check BLDC_controller_data.c * 2. The parameters are represented in fixed point data type for a more efficient code execution * 3. For calibrating the fixed-point parameters use the Fixed-Point Viewer tool (see ) * 4. For more details regarding the parameters and the working principle of the controller please consult the Simulink model * 5. A webview was created, so Matlab/Simulink installation is not needed, unless you want to regenerate the code. * The webview is an html page that can be opened with browsers like: Microsoft Internet Explorer or Microsoft Edge * * NOTES Field Weakening / Phase Advance: * 1. The Field Weakening is a linear interpolation from 0 to FIELD_WEAK_MAX or PHASE_ADV_MAX (depeding if FOC or SIN is selected, respectively) * 2. The Field Weakening starts engaging at FIELD_WEAK_LO and reaches the maximum value at FIELD_WEAK_HI * 3. If you re-calibrate the Field Weakening please take all the safety measures! The motors can spin very fast! Inputs: - cmd1 and cmd2: analog normalized input values. INPUT_MIN to INPUT_MAX - button1 and button2: digital input values. 0 or 1 - adc_buffer.l_tx2 and adc_buffer.l_rx2: unfiltered ADC values (you do not need them). 0 to 4095 Outputs: - speedR and speedL: normal driving INPUT_MIN to INPUT_MAX */ // Control selections #define CTRL_TYP_SEL 2 // [-] Control type selection: 0 = Commutation , 1 = Sinusoidal, 2 = FOC Field Oriented Control (default) #define CTRL_MOD_REQ 1 // [-] Control mode request: 0 = Open mode, 1 = VOLTAGE mode (default), 2 = SPEED mode, 3 = TORQUE mode. Note: SPEED and TORQUE modes are only available for FOC! #define DIAG_ENA 1 // [-] Motor Diagnostics enable flag: 0 = Disabled, 1 = Enabled (default) // Limitation settings #define I_MOT_MAX 15 // [A] Maximum motor current limit #define I_DC_MAX 17 // [A] Maximum DC Link current limit (This is the final current protection. Above this value, current chopping is applied. To avoid this make sure that I_DC_MAX = I_MOT_MAX + 2A) #define N_MOT_MAX 1000 // [rpm] Maximum motor speed limit // Field Weakening / Phase Advance #define FIELD_WEAK_ENA 0 // [-] Field Weakening / Phase Advance enable flag: 0 = Disabled (default), 1 = Enabled #define FIELD_WEAK_MAX 5 // [A] Maximum Field Weakening D axis current (only for FOC). Higher current results in higher maximum speed. #define PHASE_ADV_MAX 25 // [deg] Maximum Phase Advance angle (only for SIN). Higher angle results in higher maximum speed. #define FIELD_WEAK_HI 1500 // [-] Input target High threshold for reaching maximum Field Weakening / Phase Advance. Do NOT set this higher than 1500. #define FIELD_WEAK_LO 1000 // [-] Input target Low threshold for starting Field Weakening / Phase Advance. Do NOT set this higher than 1000. // Data checks - Do NOT touch #if (FIELD_WEAK_ENA == 0) #undef FIELD_WEAK_HI #define FIELD_WEAK_HI 1000 // [-] This prevents the input target going beyond 1000 when Field Weakening is not enabled #endif #define INPUT_MAX MAX( 1000, FIELD_WEAK_HI) // [-] Defines the Input target maximum limitation #define INPUT_MIN MIN(-1000,-FIELD_WEAK_HI) // [-] Defines the Input target minimum limitation #define INPUT_MID INPUT_MAX / 2 // Multiple tap detection: default DOUBLE Tap (4 pulses) #define MULTIPLE_TAP_NR 2 * 2 // [-] Define tap number: MULTIPLE_TAP_NR = number_of_taps * 2, number_of_taps = 1 (for single taping), 2 (for double tapping), 3 (for triple tapping), etc... #define MULTIPLE_TAP_HI 600 // [-] Multiple tap detection High hysteresis threshold #define MULTIPLE_TAP_LO 200 // [-] Multiple tap detection Low hysteresis threshold #define MULTIPLE_TAP_TIMEOUT 2000 // [ms] Multiple tap detection Timeout period. The taps need to happen within this time window to be accepted. // Value of RATE is in fixdt(1,16,4): VAL_fixedPoint = VAL_floatingPoint * 2^4. In this case 480 = 30 * 2^4 #define RATE 480 // 30.0f [-] lower value == slower rate [0, 32767] = [0.0, 2047.9375]. Do NOT make rate negative (>32767) // ########################### END OF MOTOR CONTROL ######################## // ############################### DO-NOT-TOUCH SETTINGS ############################### #define PWM_FREQ 16000 // PWM frequency in Hz / is also used for buzzer #define DEAD_TIME 48 // PWM deadtime #ifdef VARIANT_TRANSPOTTER #define DELAY_IN_MAIN_LOOP 2 #else #define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing. #endif #define TIMEOUT 5 // number of wrong / missing input commands before emergency off #define A2BIT_CONV 50 // A to bit for current conversion on ADC. Example: 1 A = 50, 2 A = 100, etc // ADC conversion time definitions #define ADC_CONV_TIME_1C5 (14) //Total ADC clock cycles / conversion = ( 1.5+12.5) #define ADC_CONV_TIME_7C5 (20) //Total ADC clock cycles / conversion = ( 7.5+12.5) #define ADC_CONV_TIME_13C5 (26) //Total ADC clock cycles / conversion = ( 13.5+12.5) #define ADC_CONV_TIME_28C5 (41) //Total ADC clock cycles / conversion = ( 28.5+12.5) #define ADC_CONV_TIME_41C5 (54) //Total ADC clock cycles / conversion = ( 41.5+12.5) #define ADC_CONV_TIME_55C5 (68) //Total ADC clock cycles / conversion = ( 55.5+12.5) #define ADC_CONV_TIME_71C5 (84) //Total ADC clock cycles / conversion = ( 71.5+12.5) #define ADC_CONV_TIME_239C5 (252) //Total ADC clock cycles / conversion = (239.5+12.5) // This settings influences the actual sample-time. Only use definitions above // This parameter needs to be the same as the ADC conversion for Current Phase of the FIRST Motor in setup.c #define ADC_CONV_CLOCK_CYCLES (ADC_CONV_TIME_7C5) // Set the configured ADC divider. This parameter needs to be the same ADC divider as PeriphClkInit.AdcClockSelection (see main.c) #define ADC_CLOCK_DIV (4) // ADC Total conversion time: this will be used to offset TIM8 in advance of TIM1 to align the Phase current ADC measurement // This parameter is used in setup.c #define ADC_TOTAL_CONV_TIME (ADC_CLOCK_DIV * ADC_CONV_CLOCK_CYCLES) // = ((SystemCoreClock / ADC_CLOCK_HZ) * ADC_CONV_CLOCK_CYCLES), where ADC_CLOCK_HZ = SystemCoreClock/ADC_CLOCK_DIV // ########################### END OF DO-NOT-TOUCH SETTINGS ############################ // ########################### UART SETIINGS ############################ #if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) #define START_FRAME 0xAAAA // [-] Start frame definition for serial commands #define SERIAL_TIMEOUT 160 // [-] Serial timeout duration for the received data. 160 ~= 0.8 sec. Calculation: 0.8 sec / 0.005 sec #endif #if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) #ifndef USART2_BAUD #define USART2_BAUD 38400 // UART2 baud rate (long wired cable) #endif #define USART2_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B #endif #if defined(FEEDBACK_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) #define USART3_BAUD 38400 // UART3 baud rate (short wired cable) #define USART3_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B #endif #if defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) #define UART_DMA_CHANNEL DMA1_Channel7 #endif #if defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) #define UART_DMA_CHANNEL DMA1_Channel2 #endif // ########################### UART SETIINGS ############################ // ############################### APPLY DEFAULT SETTINGS ############################### #ifndef SPEED_COEFFICIENT #define SPEED_COEFFICIENT DEFAULT_SPEED_COEFFICIENT #endif #ifndef STEER_COEFFICIENT #define STEER_COEFFICIENT DEFAULT_STEER_COEFFICIENT #endif #ifndef FILTER #define FILTER DEFAULT_FILTER #endif // ########################### END OF APPLY DEFAULT SETTING ############################ // ############################### VALIDATE SETTINGS ############################### #if !defined(VARIANT_ADC) && !defined(VARIANT_USART) && !defined(VARIANT_HOVERCAR) && !defined(VARIANT_TRANSPOTTER) && !defined(VARIANT_NUNCHUK) && !defined(VARIANT_PPM) && !defined(VARIANT_IBUS) && !defined(DEBUG_SERIAL_USART3) && !defined(DEBUG_SERIAL_USART2) #error Variant not defined! Please check platformio.ini or Inc/config.h for available variants. #endif #if defined(CONTROL_SERIAL_USART2) && defined(CONTROL_SERIAL_USART3) #error CONTROL_SERIAL_USART2 and CONTROL_SERIAL_USART3 not allowed, choose one. #endif #if defined(FEEDBACK_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART3) #error FEEDBACK_SERIAL_USART2 and FEEDBACK_SERIAL_USART3 not allowed, choose one. #endif #if defined(DEBUG_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART2) #error DEBUG_SERIAL_USART2 and FEEDBACK_SERIAL_USART2 not allowed, choose one. #endif #if defined(DEBUG_SERIAL_USART3) && defined(FEEDBACK_SERIAL_USART3) #error DEBUG_SERIAL_USART3 and FEEDBACK_SERIAL_USART3 not allowed, choose one. #endif #if defined(DEBUG_SERIAL_USART2) && defined(DEBUG_SERIAL_USART3) #error DEBUG_SERIAL_USART2 and DEBUG_SERIAL_USART3 not allowed, choose one. #endif #if defined(CONTROL_ADC) && (defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2)) #error CONTROL_ADC and SERIAL_USART2 not allowed. It is on the same cable. #endif #if (defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)) && defined(CONTROL_PPM) #error CONTROL_PPM and SERIAL_USART2 not allowed. It is on the same cable. #endif #if (defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)) && defined(CONTROL_NUNCHUK) #error CONTROL_NUNCHUK and SERIAL_USART3 not allowed. It is on the same cable. #endif #if (defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)) && defined(DEBUG_I2C_LCD) #error DEBUG_I2C_LCD and SERIAL_USART3 not allowed. It is on the same cable. #endif #if defined(CONTROL_PPM) && defined(CONTROL_ADC) && defined(CONTROL_NUNCHUK) || defined(CONTROL_PPM) && defined(CONTROL_ADC) || defined(CONTROL_ADC) && defined(CONTROL_NUNCHUK) || defined(CONTROL_PPM) && defined(CONTROL_NUNCHUK) #error only 1 input method allowed. use CONTROL_PPM or CONTROL_ADC or CONTROL_NUNCHUK. #endif #if defined(ADC_PROTECT_ENA) && ((ADC1_MIN - ADC_PROTECT_THRESH) <= 0 || (ADC1_MAX + ADC_PROTECT_THRESH) >= 4096) #warning ADC1 Protection NOT possible! Adjust the ADC thresholds. #undef ADC_PROTECT_ENA #endif #if defined(ADC_PROTECT_ENA) && ((ADC2_MIN - ADC_PROTECT_THRESH) <= 0 || (ADC2_MAX + ADC_PROTECT_THRESH) >= 4096) #warning ADC2 Protection NOT possible! Adjust the ADC thresholds. #undef ADC_PROTECT_ENA #endif #if defined(CONTROL_PPM) && !defined(PPM_NUM_CHANNELS) #error Total number of PPM channels needs to be set #endif // ############################# END OF VALIDATE SETTINGS ############################