/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include // for abs() #include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" #include "comms.h" //#include "hd44780.h" // Matlab includes and defines - from auto-code generation // ############################################################################### #include "BLDC_controller.h" /* Model's header file */ #include "rtwtypes.h" RT_MODEL rtM_Left_; /* Real-time model */ RT_MODEL rtM_Right_; /* Real-time model */ RT_MODEL *const rtM_Left = &rtM_Left_; RT_MODEL *const rtM_Right = &rtM_Right_; P rtP_Left; /* Block parameters (auto storage) */ DW rtDW_Left; /* Observable states */ ExtU rtU_Left; /* External inputs */ ExtY rtY_Left; /* External outputs */ P rtP_Right; /* Block parameters (auto storage) */ DW rtDW_Right; /* Observable states */ ExtU rtU_Right; /* External inputs */ ExtY rtY_Right; /* External outputs */ extern uint8_t errCode_Left; /* Global variable to handle Motor error codes */ extern uint8_t errCode_Right; /* Global variable to handle Motor error codes */ // ############################################################################### void SystemClock_Config(void); void poweroff(void); extern TIM_HandleTypeDef htim_left; extern TIM_HandleTypeDef htim_right; extern ADC_HandleTypeDef hadc1; extern ADC_HandleTypeDef hadc2; extern volatile adc_buf_t adc_buffer; //LCD_PCF8574_HandleTypeDef lcd; extern I2C_HandleTypeDef hi2c2; extern UART_HandleTypeDef huart2; static int cmd1; // normalized input values. -1000 to 1000 static int cmd2; typedef struct{ int16_t steer; int16_t speed; //uint32_t crc; } Serialcommand; static volatile Serialcommand command; static uint8_t button1, button2; static int steer; // local variable for steering. -1000 to 1000 static int speed; // local variable for speed. -1000 to 1000 extern volatile int pwml; // global variable for pwm left. -1000 to 1000 extern volatile int pwmr; // global variable for pwm right. -1000 to 1000 extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t enable; // global variable for motor enable extern volatile uint32_t timeout; // global variable for timeout extern float batteryVoltage; // global variable for battery voltage static uint32_t inactivity_timeout_counter; extern uint8_t nunchuck_data[6]; #ifdef CONTROL_PPM extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1]; #endif void poweroff(void) { // if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons buzzerPattern = 0; enable = 0; for (int i = 0; i < 8; i++) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 0); while(1) {} // } } int main(void) { HAL_Init(); __HAL_RCC_AFIO_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); SystemClock_Config(); __HAL_RCC_DMA1_CLK_DISABLE(); MX_GPIO_Init(); MX_TIM_Init(); MX_ADC1_Init(); MX_ADC2_Init(); #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) UART_Init(); #endif HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 1); HAL_ADC_Start(&hadc1); HAL_ADC_Start(&hadc2); // Matlab Init // ############################################################################### /* Set BLDC controller parameters */ rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters rtP_Left.b_selPhaABCurrMeas = 1; // Left motor measured current phases = {iA, iB} -> do NOT change rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL; rtP_Left.b_diagEna = DIAG_ENA; rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA; rtP_Left.i_max = I_MOT_MAX; rtP_Left.n_max = N_MOT_MAX; rtP_Right.b_selPhaABCurrMeas = 0; // Left motor measured current phases = {iB, iC} -> do NOT change rtP_Right.z_ctrlTypSel = CTRL_TYP_SEL; rtP_Right.b_diagEna = DIAG_ENA; rtP_Right.b_fieldWeakEna = FIELD_WEAK_ENA; rtP_Right.i_max = I_MOT_MAX; rtP_Right.n_max = N_MOT_MAX; /* Pack LEFT motor data into RTM */ rtM_Left->defaultParam = &rtP_Left; rtM_Left->dwork = &rtDW_Left; rtM_Left->inputs = &rtU_Left; rtM_Left->outputs = &rtY_Left; /* Pack RIGHT motor data into RTM */ rtM_Right->defaultParam = &rtP_Right; rtM_Right->dwork = &rtDW_Right; rtM_Right->inputs = &rtU_Right; rtM_Right->outputs = &rtY_Right; /* Initialize BLDC controllers */ BLDC_controller_initialize(rtM_Left); BLDC_controller_initialize(rtM_Right); // ############################################################################### for (int i = 8; i >= 0; i--) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } buzzerFreq = 0; HAL_GPIO_WritePin(LED_PORT, LED_PIN, 1); int lastSpeedL = 0, lastSpeedR = 0; int speedL = 0, speedR = 0; #ifdef CONTROL_PPM PPM_Init(); #endif #ifdef CONTROL_NUNCHUCK I2C_Init(); Nunchuck_Init(); #endif #ifdef CONTROL_SERIAL_USART2 UART_Control_Init(); HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, 4); #endif #ifdef DEBUG_I2C_LCD I2C_Init(); HAL_Delay(50); lcd.pcf8574.PCF_I2C_ADDRESS = 0x27; lcd.pcf8574.PCF_I2C_TIMEOUT = 5; lcd.pcf8574.i2c = hi2c2; lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2; lcd.type = TYPE0; if(LCD_Init(&lcd)!=LCD_OK){ // error occured //TODO while(1); } LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Hover V2.0"); LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Initializing..."); #endif float board_temp_adc_filtered = (float)adc_buffer.temp; float board_temp_deg_c; enable = 0; // initially motors are disabled for SAFETY while(1) { HAL_Delay(DELAY_IN_MAIN_LOOP); //delay in ms #ifdef CONTROL_NUNCHUCK Nunchuck_Read(); cmd1 = CLAMP((nunchuck_data[0] - 127) * 8, -1000, 1000); // x - axis. Nunchuck joystick readings range 30 - 230 cmd2 = CLAMP((nunchuck_data[1] - 128) * 8, -1000, 1000); // y - axis button1 = (uint8_t)nunchuck_data[5] & 1; button2 = (uint8_t)(nunchuck_data[5] >> 1) & 1; #endif #ifdef CONTROL_PPM cmd1 = CLAMP((ppm_captured_value[0] - 500) * 2, -1000, 1000); cmd2 = CLAMP((ppm_captured_value[1] - 500) * 2, -1000, 1000); button1 = ppm_captured_value[5] > 500; float scale = ppm_captured_value[2] / 1000.0f; #endif #ifdef CONTROL_ADC // ADC values range: 0-4095, see ADC-calibration in config.h cmd1 = CLAMP(adc_buffer.l_tx2 - ADC1_MIN, 0, ADC1_MAX) / (ADC1_MAX / 1000.0f); // ADC1 cmd2 = CLAMP(adc_buffer.l_rx2 - ADC2_MIN, 0, ADC2_MAX) / (ADC2_MAX / 1000.0f); // ADC2 // use ADCs as button inputs: button1 = (uint8_t)(adc_buffer.l_tx2 > 2000); // ADC1 button2 = (uint8_t)(adc_buffer.l_rx2 > 2000); // ADC2 timeout = 0; #endif #ifdef CONTROL_SERIAL_USART2 cmd1 = CLAMP((int16_t)command.steer, -1000, 1000); cmd2 = CLAMP((int16_t)command.speed, -1000, 1000); timeout = 0; #endif // Bypass - only for testing purposes // cmd1 = 2*(cmd1-500); // cmd2 = 2*(cmd2-500); // ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) ####### if (enable == 0 && (cmd1 > -50 && cmd1 < 50) && (cmd2 > -50 && cmd2 < 50)){ enable = 1; // enable motors } // ####### LOW-PASS FILTER ####### steer = (int)(steer * (1.0f - FILTER) + cmd1 * FILTER); speed = (int)(speed * (1.0f - FILTER) + cmd2 * FILTER); // ####### MIXER ####### speedR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), -1000, 1000); speedL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), -1000, 1000); #ifdef ADDITIONAL_CODE ADDITIONAL_CODE; #endif // ####### SET OUTPUTS (if the target change less than +/- 50) ####### if ((speedL > lastSpeedL-50 && speedL < lastSpeedL+50) && (speedR > lastSpeedR-50 && speedR < lastSpeedR+50) && timeout < TIMEOUT) { #ifdef INVERT_R_DIRECTION pwmr = speedR; #else pwmr = -speedR; #endif #ifdef INVERT_L_DIRECTION pwml = -speedL; #else pwml = speedL; #endif } lastSpeedL = speedL; lastSpeedR = speedR; if (inactivity_timeout_counter % 25 == 0) { // ####### CALC BOARD TEMPERATURE ####### board_temp_adc_filtered = board_temp_adc_filtered * 0.99f + (float)adc_buffer.temp * 0.01f; board_temp_deg_c = ((float)TEMP_CAL_HIGH_DEG_C - (float)TEMP_CAL_LOW_DEG_C) / ((float)TEMP_CAL_HIGH_ADC - (float)TEMP_CAL_LOW_ADC) * (board_temp_adc_filtered - (float)TEMP_CAL_LOW_ADC) + (float)TEMP_CAL_LOW_DEG_C; // ####### DEBUG SERIAL OUT ####### #ifdef CONTROL_ADC // setScopeChannel(0, (int)adc_buffer.l_tx2); // 1: ADC1 // setScopeChannel(1, (int)adc_buffer.l_rx2); // 2: ADC2 #endif setScopeChannel(0, (int16_t)speedR); // 1: output command: [-1000, 1000] setScopeChannel(1, (int16_t)speedL); // 2: output command: [-1000, 1000] setScopeChannel(2, (int16_t)rtY_Right.n_mot); // 3: Real motor speed [rpm] setScopeChannel(3, (int16_t)rtY_Left.n_mot); // 4: Real motor speed [rpm] setScopeChannel(4, (int16_t)adc_buffer.batt1); // 5: for battery voltage calibration setScopeChannel(5, (int16_t)(batteryVoltage * 100.0f)); // 6: for verifying battery voltage calibration setScopeChannel(6, (int16_t)board_temp_adc_filtered); // 7: for board temperature calibration setScopeChannel(7, (int16_t)board_temp_deg_c); // 8: for verifying board temperature calibration consoleScope(); } HAL_GPIO_TogglePin(LED_PORT, LED_PIN); // ####### POWEROFF BY POWER-BUTTON ####### if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} poweroff(); } // ####### BEEP AND EMERGENCY POWEROFF ####### if ((TEMP_POWEROFF_ENABLE && board_temp_deg_c >= TEMP_POWEROFF && abs(speed) < 20) || (batteryVoltage < ((float)BAT_LOW_DEAD * (float)BAT_NUMBER_OF_CELLS) && abs(speed) < 20)) { // poweroff before mainboard burns OR low bat 3 poweroff(); } else if (TEMP_WARNING_ENABLE && board_temp_deg_c >= TEMP_WARNING) { // beep if mainboard gets hot buzzerFreq = 4; buzzerPattern = 1; } else if (batteryVoltage < ((float)BAT_LOW_LVL1 * (float)BAT_NUMBER_OF_CELLS) && batteryVoltage > ((float)BAT_LOW_LVL2 * (float)BAT_NUMBER_OF_CELLS) && BAT_LOW_LVL1_ENABLE) { // low bat 1: slow beep buzzerFreq = 5; buzzerPattern = 42; } else if (batteryVoltage < ((float)BAT_LOW_LVL2 * (float)BAT_NUMBER_OF_CELLS) && batteryVoltage > ((float)BAT_LOW_DEAD * (float)BAT_NUMBER_OF_CELLS) && BAT_LOW_LVL2_ENABLE) { // low bat 2: fast beep buzzerFreq = 5; buzzerPattern = 6; } else if (errCode_Left || errCode_Right) { // beep in case of Motor error - fast beep buzzerFreq = 6; buzzerPattern = 2; } else if (BEEPS_BACKWARD && speed < -50) { // backward beep buzzerFreq = 5; buzzerPattern = 1; } else { // do not beep buzzerFreq = 0; buzzerPattern = 0; } // ####### INACTIVITY TIMEOUT ####### if (abs(speedL) > 50 || abs(speedR) > 50) { inactivity_timeout_counter = 0; } else { inactivity_timeout_counter ++; } if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms poweroff(); } } } /** System Clock Configuration */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; HAL_RCC_OscConfig(&RCC_OscInitStruct); /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; // PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); }