/** * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2020-2021 Emanuel FERU * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ // Includes #include #include // for abs() #include #include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" #include "eeprom.h" #include "util.h" #include "BLDC_controller.h" #include "rtwtypes.h" #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) #include "hd44780.h" #endif /* =========================== Variable Definitions =========================== */ //------------------------------------------------------------------------ // Global variables set externally //------------------------------------------------------------------------ extern volatile adc_buf_t adc_buffer; extern I2C_HandleTypeDef hi2c2; extern UART_HandleTypeDef huart2; extern UART_HandleTypeDef huart3; extern int16_t batVoltage; extern uint8_t backwardDrive; extern uint8_t buzzerCount; // global variable for the buzzer counts. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t enable; // global variable for motor enable extern uint8_t nunchuk_data[6]; extern volatile uint32_t timeoutCntGen; // global counter for general timeout counter extern volatile uint8_t timeoutFlgGen; // global flag for general timeout counter extern volatile uint32_t main_loop_counter; #if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT) extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1]; #endif #if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT) extern volatile uint16_t pwm_captured_ch1_value; extern volatile uint16_t pwm_captured_ch2_value; #endif //------------------------------------------------------------------------ // Global variables set here in util.c //------------------------------------------------------------------------ // Matlab defines - from auto-code generation //--------------- RT_MODEL rtM_Left_; /* Real-time model */ RT_MODEL rtM_Right_; /* Real-time model */ RT_MODEL *const rtM_Left = &rtM_Left_; RT_MODEL *const rtM_Right = &rtM_Right_; extern P rtP_Left; /* Block parameters (auto storage) */ DW rtDW_Left; /* Observable states */ ExtU rtU_Left; /* External inputs */ ExtY rtY_Left; /* External outputs */ P rtP_Right; /* Block parameters (auto storage) */ DW rtDW_Right; /* Observable states */ ExtU rtU_Right; /* External inputs */ ExtY rtY_Right; /* External outputs */ //--------------- uint8_t inIdx = 0; #if defined(PRI_INPUT1) && defined(PRI_INPUT2) && defined(AUX_INPUT1) && defined(AUX_INPUT2) InputStruct input1[INPUTS_NR] = { {0, 0, 0, PRI_INPUT1}, {0, 0, 0, AUX_INPUT1} }; InputStruct input2[INPUTS_NR] = { {0, 0, 0, PRI_INPUT2}, {0, 0, 0, AUX_INPUT2} }; #else InputStruct input1[INPUTS_NR] = { {0, 0, 0, PRI_INPUT1} }; InputStruct input2[INPUTS_NR] = { {0, 0, 0, PRI_INPUT2} }; #endif int16_t speedAvg; // average measured speed int16_t speedAvgAbs; // average measured speed in absolute uint8_t timeoutFlgADC = 0; // Timeout Flag for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data) uint8_t timeoutFlgSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) uint8_t ctrlModReqRaw = CTRL_MOD_REQ; uint8_t ctrlModReq = CTRL_MOD_REQ; // Final control mode request #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) LCD_PCF8574_HandleTypeDef lcd; #endif #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) uint8_t nunchuk_connected = 1; #else uint8_t nunchuk_connected = 0; #endif #ifdef VARIANT_TRANSPOTTER float setDistance; uint16_t VirtAddVarTab[NB_OF_VAR] = {1337}; // Virtual address defined by the user: 0xFFFF value is prohibited static uint16_t saveValue = 0; static uint8_t saveValue_valid = 0; #elif !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) uint16_t VirtAddVarTab[NB_OF_VAR] = {1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018}; #else uint16_t VirtAddVarTab[NB_OF_VAR] = {1000}; // Dummy virtual address to avoid warnings #endif //------------------------------------------------------------------------ // Local variables //------------------------------------------------------------------------ static int16_t INPUT_MAX; // [-] Input target maximum limitation static int16_t INPUT_MIN; // [-] Input target minimum limitation #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) static uint8_t cur_spd_valid = 0; static uint8_t inp_cal_valid = 0; #endif #if defined(CONTROL_ADC) static uint16_t timeoutCntADC = ADC_PROTECT_TIMEOUT; // Timeout counter for ADC Protection #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) static uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer static uint32_t rx_buffer_L_len = ARRAY_LEN(rx_buffer_L); #endif #if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) static uint16_t timeoutCntSerial_L = SERIAL_TIMEOUT; // Timeout counter for Rx Serial command static uint8_t timeoutFlgSerial_L = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #endif #if defined(SIDEBOARD_SERIAL_USART2) SerialSideboard Sideboard_L; SerialSideboard Sideboard_L_raw; static uint32_t Sideboard_L_len = sizeof(Sideboard_L); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) static uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer static uint32_t rx_buffer_R_len = ARRAY_LEN(rx_buffer_R); #endif #if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) static uint16_t timeoutCntSerial_R = SERIAL_TIMEOUT; // Timeout counter for Rx Serial command static uint8_t timeoutFlgSerial_R = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #endif #if defined(SIDEBOARD_SERIAL_USART3) SerialSideboard Sideboard_R; SerialSideboard Sideboard_R_raw; static uint32_t Sideboard_R_len = sizeof(Sideboard_R); #endif #if defined(CONTROL_SERIAL_USART2) static SerialCommand commandL; static SerialCommand commandL_raw; static uint32_t commandL_len = sizeof(commandL); #ifdef CONTROL_IBUS static uint16_t ibusL_captured_value[IBUS_NUM_CHANNELS]; #endif #endif #if defined(CONTROL_SERIAL_USART3) static SerialCommand commandR; static SerialCommand commandR_raw; static uint32_t commandR_len = sizeof(commandR); #ifdef CONTROL_IBUS static uint16_t ibusR_captured_value[IBUS_NUM_CHANNELS]; #endif #endif #if defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT) static uint8_t button1; // Blue static uint8_t button2; // Green #endif #ifdef VARIANT_HOVERCAR static uint8_t brakePressed; #endif #if defined(CRUISE_CONTROL_SUPPORT) || (defined(STANDSTILL_HOLD_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ != SPD_MODE)) static uint8_t cruiseCtrlAcv = 0; static uint8_t standstillAcv = 0; #endif /* =========================== Retargeting printf =========================== */ /* retarget the C library printf function to the USART */ #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) #ifdef __GNUC__ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { #if defined(DEBUG_SERIAL_USART2) HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 1000); #elif defined(DEBUG_SERIAL_USART3) HAL_UART_Transmit(&huart3, (uint8_t *)&ch, 1, 1000); #endif return ch; } #ifdef __GNUC__ int _write(int file, char *data, int len) { int i; for (i = 0; i < len; i++) { __io_putchar( *data++ );} return len; } #endif #endif /* =========================== Initialization Functions =========================== */ void BLDC_Init(void) { /* Set BLDC controller parameters */ rtP_Left.b_angleMeasEna = 0; // Motor angle input: 0 = estimated angle, 1 = measured angle (e.g. if encoder is available) rtP_Left.z_selPhaCurMeasABC = 0; // Left motor measured current phases {Green, Blue} = {iA, iB} -> do NOT change rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL; rtP_Left.b_diagEna = DIAG_ENA; rtP_Left.i_max = (I_MOT_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.n_max = N_MOT_MAX << 4; // fixdt(1,16,4) rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA; rtP_Left.id_fieldWeakMax = (FIELD_WEAK_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.a_phaAdvMax = PHASE_ADV_MAX << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4) rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters rtP_Right.z_selPhaCurMeasABC = 1; // Right motor measured current phases {Blue, Yellow} = {iB, iC} -> do NOT change /* Pack LEFT motor data into RTM */ rtM_Left->defaultParam = &rtP_Left; rtM_Left->dwork = &rtDW_Left; rtM_Left->inputs = &rtU_Left; rtM_Left->outputs = &rtY_Left; /* Pack RIGHT motor data into RTM */ rtM_Right->defaultParam = &rtP_Right; rtM_Right->dwork = &rtDW_Right; rtM_Right->inputs = &rtU_Right; rtM_Right->outputs = &rtY_Right; /* Initialize BLDC controllers */ BLDC_controller_initialize(rtM_Left); BLDC_controller_initialize(rtM_Right); } void Input_Lim_Init(void) { // Input Limitations - ! Do NOT touch ! if (rtP_Left.b_fieldWeakEna || rtP_Right.b_fieldWeakEna) { INPUT_MAX = MAX( 1000, FIELD_WEAK_HI); INPUT_MIN = MIN(-1000,-FIELD_WEAK_HI); } else { INPUT_MAX = 1000; INPUT_MIN = -1000; } } void Input_Init(void) { #if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT) PPM_Init(); #endif #if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT) PWM_Init(); #endif #ifdef CONTROL_NUNCHUK I2C_Init(); Nunchuk_Init(); #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) UART2_Init(); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) UART3_Init(); #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) HAL_UART_Receive_DMA(&huart2, (uint8_t *)rx_buffer_L, sizeof(rx_buffer_L)); UART_DisableRxErrors(&huart2); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) HAL_UART_Receive_DMA(&huart3, (uint8_t *)rx_buffer_R, sizeof(rx_buffer_R)); UART_DisableRxErrors(&huart3); #endif #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) uint16_t writeCheck, readVal; HAL_FLASH_Unlock(); EE_Init(); /* EEPROM Init */ EE_ReadVariable(VirtAddVarTab[0], &writeCheck); if (writeCheck == FLASH_WRITE_KEY) { EE_ReadVariable(VirtAddVarTab[1] , &readVal); rtP_Left.i_max = rtP_Right.i_max = (int16_t)readVal; EE_ReadVariable(VirtAddVarTab[2] , &readVal); rtP_Left.n_max = rtP_Right.n_max = (int16_t)readVal; for (uint8_t i=0; iInstance->CR1, USART_CR1_PEIE); /* Disable PE (Parity Error) interrupts */ CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); /* Disable EIE (Frame error, noise error, overrun error) interrupts */ } #endif /* =========================== General Functions =========================== */ void poweronMelody(void) { buzzerCount = 0; // prevent interraction with beep counter for (int i = 8; i >= 0; i--) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } buzzerFreq = 0; } void beepCount(uint8_t cnt, uint8_t freq, uint8_t pattern) { buzzerCount = cnt; buzzerFreq = freq; buzzerPattern = pattern; } void beepLong(uint8_t freq) { buzzerCount = 0; // prevent interraction with beep counter buzzerFreq = freq; HAL_Delay(500); buzzerFreq = 0; } void beepShort(uint8_t freq) { buzzerCount = 0; // prevent interraction with beep counter buzzerFreq = freq; HAL_Delay(100); buzzerFreq = 0; } void beepShortMany(uint8_t cnt, int8_t dir) { if (dir >= 0) { // increasing tone for(uint8_t i = 2*cnt; i >= 2; i=i-2) { beepShort(i + 3); } } else { // decreasing tone for(uint8_t i = 2; i <= 2*cnt; i=i+2) { beepShort(i + 3); } } } void calcAvgSpeed(void) { // Calculate measured average speed. The minus sign (-) is because motors spin in opposite directions #if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot + rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot + rtY_Right.n_mot) / 2; #endif // Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1) if (SPEED_COEFFICIENT & (1 << 16)) { speedAvg = -speedAvg; } speedAvgAbs = abs(speedAvg); } /* * Auto-calibration of the ADC Limits * This function finds the Minimum, Maximum, and Middle for the ADC input * Procedure: * - press the power button for more than 5 sec and release after the beep sound * - move the potentiometers freely to the min and max limits repeatedly * - release potentiometers to the resting postion * - press the power button to confirm or wait for the 20 sec timeout * The Values will be saved to flash. Values are persistent if you flash with platformio. To erase them, make a full chip erase. */ void adcCalibLim(void) { calcAvgSpeed(); if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning return; } #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("Input calibration started...\r\n"); #endif readInputRaw(); // Inititalization: MIN = a high value, MAX = a low value int32_t input1_fixdt = input1[inIdx].raw << 16; int32_t input2_fixdt = input2[inIdx].raw << 16; int16_t INPUT1_MIN_temp = MAX_int16_T; int16_t INPUT1_MID_temp = 0; int16_t INPUT1_MAX_temp = MIN_int16_T; int16_t INPUT2_MIN_temp = MAX_int16_T; int16_t INPUT2_MID_temp = 0; int16_t INPUT2_MAX_temp = MIN_int16_T; int16_t input_margin = 0; uint16_t input_cal_timeout = 0; #ifdef CONTROL_ADC if (inIdx == CONTROL_ADC) { input_margin = ADC_MARGIN; } #endif // Extract MIN, MAX and MID from ADC while the power button is not pressed while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && input_cal_timeout++ < 4000) { // 20 sec timeout readInputRaw(); filtLowPass32(input1[inIdx].raw, FILTER, &input1_fixdt); filtLowPass32(input2[inIdx].raw, FILTER, &input2_fixdt); INPUT1_MID_temp = (int16_t)(input1_fixdt >> 16);// CLAMP(input1_fixdt >> 16, INPUT1_MIN, INPUT1_MAX); // convert fixed-point to integer INPUT2_MID_temp = (int16_t)(input2_fixdt >> 16);// CLAMP(input2_fixdt >> 16, INPUT2_MIN, INPUT2_MAX); INPUT1_MIN_temp = MIN(INPUT1_MIN_temp, INPUT1_MID_temp); INPUT1_MAX_temp = MAX(INPUT1_MAX_temp, INPUT1_MID_temp); INPUT2_MIN_temp = MIN(INPUT2_MIN_temp, INPUT2_MID_temp); INPUT2_MAX_temp = MAX(INPUT2_MAX_temp, INPUT2_MID_temp); HAL_Delay(5); } #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("Input1 is "); #endif input1[inIdx].typ = checkInputType(INPUT1_MIN_temp, INPUT1_MID_temp, INPUT1_MAX_temp); if (input1[inIdx].typ == input1[inIdx].typDef || input1[inIdx].typDef == 3) { // Accept calibration only if the type is correct OR type was set to 3 (auto) input1[inIdx].min = INPUT1_MIN_temp + input_margin; input1[inIdx].mid = INPUT1_MID_temp; input1[inIdx].max = INPUT1_MAX_temp - input_margin; #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("..OK\r\n"); #endif } else { input1[inIdx].typ = 0; // Disable input #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("..NOK\r\n"); #endif } #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("Input2 is "); #endif input2[inIdx].typ = checkInputType(INPUT2_MIN_temp, INPUT2_MID_temp, INPUT2_MAX_temp); if (input2[inIdx].typ == input2[inIdx].typDef || input2[inIdx].typDef == 3) { // Accept calibration only if the type is correct OR type was set to 3 (auto) input2[inIdx].min = INPUT2_MIN_temp + input_margin; input2[inIdx].mid = INPUT2_MID_temp; input2[inIdx].max = INPUT2_MAX_temp - input_margin; #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("..OK\r\n"); #endif } else { input2[inIdx].typ = 0; // Disable input #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("..NOK\r\n"); #endif } inp_cal_valid = 1; // Mark calibration to be saved in Flash at shutdown #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("Limits Input1: TYP:%i MIN:%i MID:%i MAX:%i\r\nLimits Input2: TYP:%i MIN:%i MID:%i MAX:%i\r\n", input1[inIdx].typ, input1[inIdx].min, input1[inIdx].mid, input1[inIdx].max, input2[inIdx].typ, input2[inIdx].min, input2[inIdx].mid, input2[inIdx].max); #endif #endif } /* * Update Maximum Motor Current Limit (via ADC1) and Maximum Speed Limit (via ADC2) * Procedure: * - press the power button for more than 5 sec and immediatelly after the beep sound press one more time shortly * - move and hold the pots to a desired limit position for Current and Speed * - press the power button to confirm or wait for the 10 sec timeout */ void updateCurSpdLim(void) { calcAvgSpeed(); if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning return; } #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("Torque and Speed limits update started...\r\n"); #endif int32_t input1_fixdt = input1[inIdx].raw << 16; int32_t input2_fixdt = input2[inIdx].raw << 16; uint16_t cur_factor; // fixdt(0,16,16) uint16_t spd_factor; // fixdt(0,16,16) uint16_t cur_spd_timeout = 0; cur_spd_valid = 0; // Wait for the power button press while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && cur_spd_timeout++ < 2000) { // 10 sec timeout readInputRaw(); filtLowPass32(input1[inIdx].raw, FILTER, &input1_fixdt); filtLowPass32(input2[inIdx].raw, FILTER, &input2_fixdt); HAL_Delay(5); } // Calculate scaling factors cur_factor = CLAMP((input1_fixdt - (input1[inIdx].min << 16)) / (input1[inIdx].max - input1[inIdx].min), 6553, 65535); // ADC1, MIN_cur(10%) = 1.5 A spd_factor = CLAMP((input2_fixdt - (input2[inIdx].min << 16)) / (input2[inIdx].max - input2[inIdx].min), 3276, 65535); // ADC2, MIN_spd(5%) = 50 rpm if (input1[inIdx].typ != 0){ // Update current limit rtP_Left.i_max = rtP_Right.i_max = (int16_t)((I_MOT_MAX * A2BIT_CONV * cur_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4) cur_spd_valid = 1; // Mark update to be saved in Flash at shutdown } if (input2[inIdx].typ != 0){ // Update speed limit rtP_Left.n_max = rtP_Right.n_max = (int16_t)((N_MOT_MAX * spd_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4) cur_spd_valid += 2; // Mark update to be saved in Flash at shutdown } #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) // cur_spd_valid: 0 = No limit changed, 1 = Current limit changed, 2 = Speed limit changed, 3 = Both limits changed printf("Limits (%i)\r\nCurrent: fixdt:%li factor%i i_max:%i \r\nSpeed: fixdt:%li factor:%i n_max:%i\r\n", cur_spd_valid, input1_fixdt, cur_factor, rtP_Left.i_max, input2_fixdt, spd_factor, rtP_Left.n_max); #endif #endif } /* * Standstill Hold Function * This function uses Cruise Control to provide an anti-roll functionality at standstill. * Only available and makes sense for FOC VOLTAGE or FOC TORQUE mode. * * Input: none * Output: standstillAcv */ void standstillHold(void) { #if defined(STANDSTILL_HOLD_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ != SPD_MODE) if (!rtP_Left.b_cruiseCtrlEna) { // If Stanstill in NOT Active -> try Activation if (((input1[inIdx].cmd > 50 || input2[inIdx].cmd < -50) && speedAvgAbs < 30) // Check if Brake is pressed AND measured speed is small || (input2[inIdx].cmd < 20 && speedAvgAbs < 5)) { // OR Throttle is small AND measured speed is very small rtP_Left.n_cruiseMotTgt = 0; rtP_Right.n_cruiseMotTgt = 0; rtP_Left.b_cruiseCtrlEna = 1; rtP_Right.b_cruiseCtrlEna = 1; standstillAcv = 1; } } else { // If Stanstill is Active -> try Deactivation if (input1[inIdx].cmd < 20 && input2[inIdx].cmd > 50 && !cruiseCtrlAcv) { // Check if Brake is released AND Throttle is pressed AND no Cruise Control rtP_Left.b_cruiseCtrlEna = 0; rtP_Right.b_cruiseCtrlEna = 0; standstillAcv = 0; } } #endif } /* * Electric Brake Function * In case of TORQUE mode, this function replaces the motor "freewheel" with a constant braking when the input torque request is 0. * This is useful when a small amount of motor braking is desired instead of "freewheel". * * Input: speedBlend = fixdt(0,16,15), reverseDir = {0, 1} * Output: input2.cmd (Throtle) with brake component included */ void electricBrake(uint16_t speedBlend, uint8_t reverseDir) { #if defined(ELECTRIC_BRAKE_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ == TRQ_MODE) int16_t brakeVal; // Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving) if (speedAvg > 0) { brakeVal = (int16_t)((-ELECTRIC_BRAKE_MAX * speedBlend) >> 15); } else { brakeVal = (int16_t)(( ELECTRIC_BRAKE_MAX * speedBlend) >> 15); } // Check if direction is reversed if (reverseDir) { brakeVal = -brakeVal; } // Calculate the new input2.cmd with brake component included if (input2[inIdx].cmd >= 0 && input2[inIdx].cmd < ELECTRIC_BRAKE_THRES) { input2[inIdx].cmd = MAX(brakeVal, ((ELECTRIC_BRAKE_THRES - input2[inIdx].cmd) * brakeVal) / ELECTRIC_BRAKE_THRES); } else if (input2[inIdx].cmd >= -ELECTRIC_BRAKE_THRES && input2[inIdx].cmd < 0) { input2[inIdx].cmd = MIN(brakeVal, ((ELECTRIC_BRAKE_THRES + input2[inIdx].cmd) * brakeVal) / ELECTRIC_BRAKE_THRES); } else if (input2[inIdx].cmd >= ELECTRIC_BRAKE_THRES) { input2[inIdx].cmd = MAX(brakeVal, ((input2[inIdx].cmd - ELECTRIC_BRAKE_THRES) * INPUT_MAX) / (INPUT_MAX - ELECTRIC_BRAKE_THRES)); } else { // when (input2.cmd < -ELECTRIC_BRAKE_THRES) input2[inIdx].cmd = MIN(brakeVal, ((input2[inIdx].cmd + ELECTRIC_BRAKE_THRES) * INPUT_MIN) / (INPUT_MIN + ELECTRIC_BRAKE_THRES)); } #endif } /* * Cruise Control Function * This function activates/deactivates cruise control. * * Input: button (as a pulse) * Output: cruiseCtrlAcv */ void cruiseControl(uint8_t button) { #ifdef CRUISE_CONTROL_SUPPORT if (button && !rtP_Left.b_cruiseCtrlEna) { // Cruise control activated rtP_Left.n_cruiseMotTgt = rtY_Left.n_mot; rtP_Right.n_cruiseMotTgt = rtY_Right.n_mot; rtP_Left.b_cruiseCtrlEna = 1; rtP_Right.b_cruiseCtrlEna = 1; cruiseCtrlAcv = 1; beepShortMany(2, 1); // 200 ms beep delay. Acts as a debounce also. } else if (button && rtP_Left.b_cruiseCtrlEna && !standstillAcv) { // Cruise control deactivated if no Standstill Hold is active rtP_Left.b_cruiseCtrlEna = 0; rtP_Right.b_cruiseCtrlEna = 0; cruiseCtrlAcv = 0; beepShortMany(2, -1); } #endif } /* * Check Input Type * This function identifies the input type: 0: Disabled, 1: Normal Pot, 2: Middle Resting Pot */ int checkInputType(int16_t min, int16_t mid, int16_t max){ int type = 0; #ifdef CONTROL_ADC int16_t threshold = 400; // Threshold to define if values are too close #else int16_t threshold = 200; #endif if ((min / threshold) == (max / threshold) || (mid / threshold) == (max / threshold) || min > max || mid > max) { type = 0; #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("ignored"); // (MIN and MAX) OR (MID and MAX) are close, disable input #endif } else { if ((min / threshold) == (mid / threshold)){ type = 1; #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("a normal pot"); // MIN and MID are close, it's a normal pot #endif } else { type = 2; #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("a mid-resting pot"); // it's a mid resting pot #endif } #ifdef CONTROL_ADC if ((min + ADC_MARGIN - ADC_PROTECT_THRESH) > 0 && (max - ADC_MARGIN + ADC_PROTECT_THRESH) < 4095) { #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf(" AND protected"); #endif beepLong(2); // Indicate protection by a beep } #endif } return type; } /* =========================== Input Functions =========================== */ /* * Calculate Input Command * This function realizes dead-band around 0 and scales the input between [out_min, out_max] */ void calcInputCmd(InputStruct *in, int16_t out_min, int16_t out_max) { switch (in->typ){ case 1: // Input is a normal pot in->cmd = CLAMP(MAP(in->raw, in->min, in->max, 0, out_max), 0, out_max); break; case 2: // Input is a mid resting pot if( in->raw > in->mid - in->dband && in->raw < in->mid + in->dband ) { in->cmd = 0; } else if(in->raw > in->mid) { in->cmd = CLAMP(MAP(in->raw, in->mid + in->dband, in->max, 0, out_max), 0, out_max); } else { in->cmd = CLAMP(MAP(in->raw, in->mid - in->dband, in->min, 0, out_min), out_min, 0); } break; default: // Input is ignored in->cmd = 0; break; } } /* * Function to read the Input Raw values from various input devices */ void readInputRaw(void) { #ifdef CONTROL_ADC if (inIdx == CONTROL_ADC) { input1[inIdx].raw = adc_buffer.l_tx2; input2[inIdx].raw = adc_buffer.l_rx2; } #endif #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) if (nunchuk_connected) { Nunchuk_Read(); if (inIdx == CONTROL_NUNCHUK) { input1[inIdx].raw = (nunchuk_data[0] - 127) * 8; // X axis 0-255 input2[inIdx].raw = (nunchuk_data[1] - 128) * 8; // Y axis 0-255 } #ifdef SUPPORT_BUTTONS button1 = (uint8_t)nunchuk_data[5] & 1; button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1; #endif } #endif #if defined(CONTROL_SERIAL_USART2) if (inIdx == CONTROL_SERIAL_USART2) { #ifdef CONTROL_IBUS for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) { ibusL_captured_value[(i/2)] = CLAMP(commandL.channels[i] + (commandL.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 } input1[inIdx].raw = (ibusL_captured_value[0] - 500) * 2; input2[inIdx].raw = (ibusL_captured_value[1] - 500) * 2; #else input1[inIdx].raw = commandL.steer; input2[inIdx].raw = commandL.speed; #endif } #endif #if defined(CONTROL_SERIAL_USART3) if (inIdx == CONTROL_SERIAL_USART3) { #ifdef CONTROL_IBUS for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) { ibusR_captured_value[(i/2)] = CLAMP(commandR.channels[i] + (commandR.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 } input1[inIdx].raw = (ibusR_captured_value[0] - 500) * 2; input2[inIdx].raw = (ibusR_captured_value[1] - 500) * 2; #else input1[inIdx].raw = commandR.steer; input2[inIdx].raw = commandR.speed; #endif } #endif #if defined(SIDEBOARD_SERIAL_USART2) if (inIdx == SIDEBOARD_SERIAL_USART2) { input1[inIdx].raw = Sideboard_L.cmd1; input2[inIdx].raw = Sideboard_L.cmd2; } #endif #if defined(SIDEBOARD_SERIAL_USART3) if (inIdx == SIDEBOARD_SERIAL_USART3) { input1[inIdx].raw = Sideboard_R.cmd1; input2[inIdx].raw = Sideboard_R.cmd2; } #endif #if defined(CONTROL_PPM_LEFT) if (inIdx == CONTROL_PPM_LEFT) { input1[inIdx].raw = (ppm_captured_value[0] - 500) * 2; input2[inIdx].raw = (ppm_captured_value[1] - 500) * 2; } #endif #if defined(CONTROL_PPM_RIGHT) if (inIdx == CONTROL_PPM_RIGHT) { input1[inIdx].raw = (ppm_captured_value[0] - 500) * 2; input2[inIdx].raw = (ppm_captured_value[1] - 500) * 2; } #endif #if (defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)) && defined(SUPPORT_BUTTONS) button1 = ppm_captured_value[5] > 500; button2 = 0; #endif #if defined(CONTROL_PWM_LEFT) if (inIdx == CONTROL_PWM_LEFT) { input1[inIdx].raw = (pwm_captured_ch1_value - 500) * 2; input2[inIdx].raw = (pwm_captured_ch2_value - 500) * 2; } #endif #if defined(CONTROL_PWM_RIGHT) if (inIdx == CONTROL_PWM_RIGHT) { input1[inIdx].raw = (pwm_captured_ch1_value - 500) * 2; input2[inIdx].raw = (pwm_captured_ch2_value - 500) * 2; } #endif #ifdef VARIANT_TRANSPOTTER #ifdef GAMETRAK_CONNECTION_NORMAL input1[inIdx].cmd = adc_buffer.l_rx2; input2[inIdx].cmd = adc_buffer.l_tx2; #endif #ifdef GAMETRAK_CONNECTION_ALTERNATE input1[inIdx].cmd = adc_buffer.l_tx2; input2[inIdx].cmd = adc_buffer.l_rx2; #endif #endif } /* * Function to handle the ADC, UART and General timeout (Nunchuk, PPM, PWM) */ void handleTimeout(void) { #ifdef CONTROL_ADC if (inIdx == CONTROL_ADC) { // If input1 or Input2 is either below MIN - Threshold or above MAX + Threshold, ADC protection timeout if (IN_RANGE(input1[inIdx].raw, input1[inIdx].min - ADC_PROTECT_THRESH, input1[inIdx].max + ADC_PROTECT_THRESH) && IN_RANGE(input2[inIdx].raw, input2[inIdx].min - ADC_PROTECT_THRESH, input2[inIdx].max + ADC_PROTECT_THRESH)) { timeoutFlgADC = 0; // Reset the timeout flag timeoutCntADC = 0; // Reset the timeout counter } else { if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification timeoutFlgADC = 1; // Timeout detected timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value } } } #endif #if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) if (timeoutCntSerial_L++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlgSerial_L = 1; // Timeout detected timeoutCntSerial_L = SERIAL_TIMEOUT; // Limit timout counter value #if defined(DUAL_INPUTS) && ((defined(CONTROL_SERIAL_USART2) && CONTROL_SERIAL_USART2 == 1) || (defined(SIDEBOARD_SERIAL_USART2) && SIDEBOARD_SERIAL_USART2 == 1)) inIdx = 0; // Switch to Primary input in case of Timeout on Auxiliary input #endif } else { // No Timeout #if defined(DUAL_INPUTS) && defined(SIDEBOARD_SERIAL_USART2) if (Sideboard_L.sensors & SWA_SET) { // If SWA is set, switch to Sideboard control inIdx = SIDEBOARD_SERIAL_USART2; } else { inIdx = !SIDEBOARD_SERIAL_USART2; } #elif defined(DUAL_INPUTS) && (defined(CONTROL_SERIAL_USART2) && CONTROL_SERIAL_USART2 == 1) inIdx = 1; // Switch to Auxiliary input in case of NO Timeout on Auxiliary input #endif } #if (defined(CONTROL_SERIAL_USART2) && CONTROL_SERIAL_USART2 == 0) || (defined(SIDEBOARD_SERIAL_USART2) && SIDEBOARD_SERIAL_USART2 == 0 && !defined(VARIANT_HOVERBOARD)) timeoutFlgSerial = timeoutFlgSerial_L; // Report Timeout only on the Primary Input #endif #endif #if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) if (timeoutCntSerial_R++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlgSerial_R = 1; // Timeout detected timeoutCntSerial_R = SERIAL_TIMEOUT; // Limit timout counter value #if defined(DUAL_INPUTS) && ((defined(CONTROL_SERIAL_USART3) && CONTROL_SERIAL_USART3 == 1) || (defined(SIDEBOARD_SERIAL_USART3) && SIDEBOARD_SERIAL_USART3 == 1)) inIdx = 0; // Switch to Primary input in case of Timeout on Auxiliary input #endif } else { // No Timeout #if defined(DUAL_INPUTS) && defined(SIDEBOARD_SERIAL_USART3) if (Sideboard_R.sensors & SWA_SET) { // If SWA is set, switch to Sideboard control inIdx = SIDEBOARD_SERIAL_USART3; } else { inIdx = !SIDEBOARD_SERIAL_USART3; } #elif defined(DUAL_INPUTS) && (defined(CONTROL_SERIAL_USART3) && CONTROL_SERIAL_USART3 == 1) inIdx = 1; // Switch to Auxiliary input in case of NO Timeout on Auxiliary input #endif } #if (defined(CONTROL_SERIAL_USART3) && CONTROL_SERIAL_USART3 == 0) || (defined(SIDEBOARD_SERIAL_USART3) && SIDEBOARD_SERIAL_USART3 == 0 && !defined(VARIANT_HOVERBOARD)) timeoutFlgSerial = timeoutFlgSerial_R; // Report Timeout only on the Primary Input #endif #endif #if defined(SIDEBOARD_SERIAL_USART2) && defined(SIDEBOARD_SERIAL_USART3) timeoutFlgSerial = timeoutFlgSerial_L || timeoutFlgSerial_R; #endif #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) || defined(VARIANT_TRANSPOTTER) || \ defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT) || defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT) if (timeoutCntGen++ >= TIMEOUT) { // Timeout qualification #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) || defined(VARIANT_TRANSPOTTER) || \ (defined(CONTROL_PPM_LEFT) && CONTROL_PPM_LEFT == 0) || (defined(CONTROL_PPM_RIGHT) && CONTROL_PPM_RIGHT == 0) || \ (defined(CONTROL_PWM_LEFT) && CONTROL_PWM_LEFT == 0) || (defined(CONTROL_PWM_RIGHT) && CONTROL_PWM_RIGHT == 0) timeoutFlgGen = 1; // Report Timeout only on the Primary Input timeoutCntGen = TIMEOUT; #endif #if defined(DUAL_INPUTS) && ((defined(CONTROL_PPM_LEFT) && CONTROL_PPM_LEFT == 1) || (defined(CONTROL_PPM_RIGHT) && CONTROL_PPM_RIGHT == 1) || \ (defined(CONTROL_PWM_LEFT) && CONTROL_PWM_LEFT == 1) || (defined(CONTROL_PWM_RIGHT) && CONTROL_PWM_RIGHT == 1)) inIdx = 0; // Switch to Primary input in case of Timeout on Auxiliary input #endif } else { #if defined(DUAL_INPUTS) && ((defined(CONTROL_PPM_LEFT) && CONTROL_PPM_LEFT == 1) || (defined(CONTROL_PPM_RIGHT) && CONTROL_PPM_RIGHT == 1) || \ (defined(CONTROL_PWM_LEFT) && CONTROL_PWM_LEFT == 1) || (defined(CONTROL_PWM_RIGHT) && CONTROL_PWM_RIGHT == 1)) inIdx = 1; // Switch to Auxiliary input in case of NO Timeout on Auxiliary input #endif } #endif if (timeoutFlgADC || timeoutFlgSerial || timeoutFlgGen) { // In case of timeout bring the system to a Safe State ctrlModReq = OPEN_MODE; // Request OPEN_MODE. This will bring the motor power to 0 in a controlled way input1[inIdx].cmd = 0; input2[inIdx].cmd = 0; } else { ctrlModReq = ctrlModReqRaw; // Follow the Mode request } } /* * Function to calculate the command to the motors. This function also manages: * - timeout detection * - MIN/MAX limitations and deadband */ void readCommand(void) { readInputRaw(); #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) calcInputCmd(&input1[inIdx], INPUT_MIN, INPUT_MAX); #if !defined(VARIANT_SKATEBOARD) calcInputCmd(&input2[inIdx], INPUT_MIN, INPUT_MAX); #else calcInputCmd(&input2[inIdx], INPUT_BRK, INPUT_MAX); #endif #endif handleTimeout(); #ifdef VARIANT_HOVERCAR if (inIdx == CONTROL_ADC) { brakePressed = (uint8_t)(input1[inIdx].cmd > 50); } else { brakePressed = (uint8_t)(input2[inIdx].cmd < -50); } #endif #if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT) button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN); button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN); #endif #if defined(CRUISE_CONTROL_SUPPORT) && (defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)) cruiseControl(button1); // Cruise control activation/deactivation #endif } /* * Check for new data received on USART2 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx * - this function is called for every USART IDLE line detection, in the USART interrupt handler */ void usart2_rx_check(void) { #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) static uint32_t old_pos; uint32_t pos; pos = rx_buffer_L_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer #endif #if defined(DEBUG_SERIAL_USART2) if (pos != old_pos) { // Check change in received data if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one usart_process_debug(&rx_buffer_L[old_pos], pos - old_pos); // Process data } else { // "Overflow" buffer mode usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data } } } #endif // DEBUG_SERIAL_USART2 #ifdef CONTROL_SERIAL_USART2 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&commandL_raw; // Initialize the pointer with command_raw address if (pos > old_pos && (pos - old_pos) == commandL_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], commandL_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size) usart_process_command(&commandL_raw, &commandL, 2); // Process data } else if ((rx_buffer_L_len - old_pos + pos) == commandL_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data } usart_process_command(&commandL_raw, &commandL, 2); // Process data } } #endif // CONTROL_SERIAL_USART2 #ifdef SIDEBOARD_SERIAL_USART2 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&Sideboard_L_raw; // Initialize the pointer with Sideboard_raw address if (pos > old_pos && (pos - old_pos) == Sideboard_L_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], Sideboard_L_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size) usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data } else if ((rx_buffer_L_len - old_pos + pos) == Sideboard_L_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_L_len - old_pos; // Move to correct position in Sideboard_raw memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data } usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data } } #endif // SIDEBOARD_SERIAL_USART2 #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) old_pos = pos; // Update old position if (old_pos == rx_buffer_L_len) { // Check and manually update if we reached end of buffer old_pos = 0; } #endif } /* * Check for new data received on USART3 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx * - this function is called for every USART IDLE line detection, in the USART interrupt handler */ void usart3_rx_check(void) { #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) static uint32_t old_pos; uint32_t pos; pos = rx_buffer_R_len - __HAL_DMA_GET_COUNTER(huart3.hdmarx); // Calculate current position in buffer #endif #if defined(DEBUG_SERIAL_USART3) if (pos != old_pos) { // Check change in received data if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one usart_process_debug(&rx_buffer_R[old_pos], pos - old_pos); // Process data } else { // "Overflow" buffer mode usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data } } } #endif // DEBUG_SERIAL_USART3 #ifdef CONTROL_SERIAL_USART3 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&commandR_raw; // Initialize the pointer with command_raw address if (pos > old_pos && (pos - old_pos) == commandR_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], commandR_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size) usart_process_command(&commandR_raw, &commandR, 3); // Process data } else if ((rx_buffer_R_len - old_pos + pos) == commandR_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data } usart_process_command(&commandR_raw, &commandR, 3); // Process data } } #endif // CONTROL_SERIAL_USART3 #ifdef SIDEBOARD_SERIAL_USART3 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&Sideboard_R_raw; // Initialize the pointer with Sideboard_raw address if (pos > old_pos && (pos - old_pos) == Sideboard_R_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], Sideboard_R_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size) usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data } else if ((rx_buffer_R_len - old_pos + pos) == Sideboard_R_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_R_len - old_pos; // Move to correct position in Sideboard_raw memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data } usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data } } #endif // SIDEBOARD_SERIAL_USART3 #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) old_pos = pos; // Update old position if (old_pos == rx_buffer_R_len) { // Check and manually update if we reached end of buffer old_pos = 0; } #endif } /* * Process Rx debug user command input */ #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) void usart_process_debug(uint8_t *userCommand, uint32_t len) { for (; len > 0; len--, userCommand++) { if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands printf("Command = %c\r\n", *userCommand); // handle_input(*userCommand); // -> Create this function to handle the user commands } } } #endif // SERIAL_DEBUG /* * Process command Rx data * - if the command_in data is valid (correct START_FRAME and checksum) copy the command_in to command_out */ #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) void usart_process_command(SerialCommand *command_in, SerialCommand *command_out, uint8_t usart_idx) { #ifdef CONTROL_IBUS uint16_t ibus_chksum; if (command_in->start == IBUS_LENGTH && command_in->type == IBUS_COMMAND) { ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND; for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) { ibus_chksum -= command_in->channels[i]; } if (ibus_chksum == (uint16_t)((command_in->checksumh << 8) + command_in->checksuml)) { *command_out = *command_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef CONTROL_SERIAL_USART2 timeoutFlgSerial_L = 0; // Clear timeout flag timeoutCntSerial_L = 0; // Reset timeout counter #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef CONTROL_SERIAL_USART3 timeoutFlgSerial_R = 0; // Clear timeout flag timeoutCntSerial_R = 0; // Reset timeout counter #endif } } } #else uint16_t checksum; if (command_in->start == SERIAL_START_FRAME) { checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed); if (command_in->checksum == checksum) { *command_out = *command_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef CONTROL_SERIAL_USART2 timeoutFlgSerial_L = 0; // Clear timeout flag timeoutCntSerial_L = 0; // Reset timeout counter #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef CONTROL_SERIAL_USART3 timeoutFlgSerial_R = 0; // Clear timeout flag timeoutCntSerial_R = 0; // Reset timeout counter #endif } } } #endif } #endif /* * Process Sideboard Rx data * - if the Sideboard_in data is valid (correct START_FRAME and checksum) copy the Sideboard_in to Sideboard_out */ #if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3) void usart_process_sideboard(SerialSideboard *Sideboard_in, SerialSideboard *Sideboard_out, uint8_t usart_idx) { uint16_t checksum; if (Sideboard_in->start == SERIAL_START_FRAME) { checksum = (uint16_t)(Sideboard_in->start ^ Sideboard_in->pitch ^ Sideboard_in->dPitch ^ Sideboard_in->cmd1 ^ Sideboard_in->cmd2 ^ Sideboard_in->sensors); if (Sideboard_in->checksum == checksum) { *Sideboard_out = *Sideboard_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef SIDEBOARD_SERIAL_USART2 timeoutCntSerial_L = 0; // Reset timeout counter timeoutFlgSerial_L = 0; // Clear timeout flag #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef SIDEBOARD_SERIAL_USART3 timeoutCntSerial_R = 0; // Reset timeout counter timeoutFlgSerial_R = 0; // Clear timeout flag #endif } } } } #endif /* =========================== Sideboard Functions =========================== */ /* * Sideboard LEDs Handling * This function manages the leds behavior connected to the sideboard */ void sideboardLeds(uint8_t *leds) { #if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3) // Enable flag: use LED4 (bottom Blue) // enable == 1, turn on led // enable == 0, blink led if (enable) { *leds |= LED4_SET; } else if (!enable && (main_loop_counter % 20 == 0)) { *leds ^= LED4_SET; } // Backward Drive: use LED5 (upper Blue) // backwardDrive == 1, blink led // backwardDrive == 0, turn off led if (backwardDrive && (main_loop_counter % 50 == 0)) { *leds ^= LED5_SET; } // Brake: use LED5 (upper Blue) // brakePressed == 1, turn on led // brakePressed == 0, turn off led #ifdef VARIANT_HOVERCAR if (brakePressed) { *leds |= LED5_SET; } else if (!brakePressed && !backwardDrive) { *leds &= ~LED5_SET; } #endif // Battery Level Indicator: use LED1, LED2, LED3 if (main_loop_counter % BAT_BLINK_INTERVAL == 0) { // | RED (LED1) | YELLOW (LED3) | GREEN (LED2) | if (batVoltage < BAT_DEAD) { // | 0 | 0 | 0 | *leds &= ~LED1_SET & ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL1) { // | B | 0 | 0 | *leds ^= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL2) { // | 1 | 0 | 0 | *leds |= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL3) { // | 0 | B | 0 | *leds ^= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL4) { // | 0 | 1 | 0 | *leds |= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL5) { // | 0 | 0 | B | *leds ^= LED2_SET; *leds &= ~LED1_SET & ~LED3_SET; } else { // | 0 | 0 | 1 | *leds |= LED2_SET; *leds &= ~LED1_SET & ~LED3_SET; } } // Error handling // Critical error: LED1 on (RED) + high pitch beep (hadled in main) // Soft error: LED3 on (YELLOW) + low pitch beep (hadled in main) if (rtY_Left.z_errCode || rtY_Right.z_errCode) { *leds |= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } if (timeoutFlgADC || timeoutFlgSerial) { *leds |= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } #endif } /* * Sideboard Sensor Handling * This function manages the sideboards photo sensors. * In non-hoverboard variants, the sensors are used as push buttons. */ void sideboardSensors(uint8_t sensors) { #if !defined(VARIANT_HOVERBOARD) && (defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)) static uint8_t sensor1_prev, sensor2_prev; static uint8_t sensor1_index; // holds the press index number for sensor1, when used as a button uint8_t sensor1_trig, sensor2_trig; #if defined(SIDEBOARD_SERIAL_USART2) uint8_t sideboardIdx = SIDEBOARD_SERIAL_USART2; uint16_t sideboardSns = Sideboard_L.sensors; #else uint8_t sideboardIdx = SIDEBOARD_SERIAL_USART3; uint16_t sideboardSns = Sideboard_R.sensors; #endif if (inIdx == sideboardIdx) { // Use Sideboard data sensor1_index = 2 + ((sideboardSns & SWB_SET) >> 9); // SWB on RC transmitter is used to change Control Type if (sensor1_index == 2) { // FOC control Type sensor1_index = (sideboardSns & SWC_SET) >> 11; // SWC on RC transmitter is used to change Control Mode } sensor1_trig = sensor1_index != sensor1_prev; // rising or falling edge change detection sensor1_prev = sensor1_index; } else { // Use Optical switches sensor1_trig = (sensors & SENSOR1_SET) && !sensor1_prev; // rising edge detection sensor2_trig = (sensors & SENSOR2_SET) && !sensor2_prev; // rising edge detection sensor1_prev = sensors & SENSOR1_SET; sensor2_prev = sensors & SENSOR2_SET; } // Control MODE and Control Type Handling if (sensor1_trig) { switch (sensor1_index) { case 0: // FOC VOLTAGE rtP_Left.z_ctrlTypSel = rtP_Right.z_ctrlTypSel = FOC_CTRL; ctrlModReqRaw = VLT_MODE; break; case 1: // FOC SPEED rtP_Left.z_ctrlTypSel = rtP_Right.z_ctrlTypSel = FOC_CTRL; ctrlModReqRaw = SPD_MODE; break; case 2: // FOC TORQUE rtP_Left.z_ctrlTypSel = rtP_Right.z_ctrlTypSel = FOC_CTRL; ctrlModReqRaw = TRQ_MODE; break; case 3: // SINUSOIDAL rtP_Left.z_ctrlTypSel = rtP_Right.z_ctrlTypSel = SIN_CTRL; break; case 4: // COMMUTATION rtP_Left.z_ctrlTypSel = rtP_Right.z_ctrlTypSel = COM_CTRL; break; } beepShortMany(sensor1_index + 1, 1); if (++sensor1_index > 4) { sensor1_index = 0; } } // Field Weakening Activation/Deactivation #ifdef CRUISE_CONTROL_SUPPORT if (sensor2_trig) { cruiseControl(sensor2_trig); } #else static uint8_t sensor2_index = 1; // holds the press index number for sensor2, when used as a button // Override in case the Sideboard control is Active if (inIdx == sideboardIdx) { // Use Sideboard data sensor2_index = (sideboardSns & SWD_SET) >> 13; // SWD on RC transmitter is used to Activate/Deactivate Field Weakening sensor2_trig = sensor2_index != sensor2_prev; // rising or falling edge change detection sensor2_prev = sensor2_index; } if (sensor2_trig) { switch (sensor2_index) { case 0: // FW Disabled rtP_Left.b_fieldWeakEna = 0; rtP_Right.b_fieldWeakEna = 0; Input_Lim_Init(); break; case 1: // FW Enabled rtP_Left.b_fieldWeakEna = 1; rtP_Right.b_fieldWeakEna = 1; Input_Lim_Init(); break; } beepShortMany(sensor2_index + 1, 1); if (++sensor2_index > 1) { sensor2_index = 0; } } #endif // CRUISE_CONTROL_SUPPORT #endif } /* =========================== Poweroff Functions =========================== */ /* * Save Configuration to Flash * This function makes sure data is not lost after power-off */ void saveConfig() { #ifdef VARIANT_TRANSPOTTER if (saveValue_valid) { HAL_FLASH_Unlock(); EE_WriteVariable(VirtAddVarTab[0], saveValue); HAL_FLASH_Lock(); } #endif #if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER) if (inp_cal_valid || cur_spd_valid) { HAL_FLASH_Unlock(); EE_WriteVariable(VirtAddVarTab[0] , (uint16_t)FLASH_WRITE_KEY); EE_WriteVariable(VirtAddVarTab[1] , (uint16_t)rtP_Left.i_max); EE_WriteVariable(VirtAddVarTab[2] , (uint16_t)rtP_Left.n_max); for (uint8_t i=0; i= 5 * 100) { // Check if press is more than 5 sec HAL_Delay(1000); if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { // Double press: Adjust Max Current, Max Speed while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } beepLong(8); updateCurSpdLim(); beepShort(5); } else { // Long press: Calibrate ADC Limits beepLong(16); adcCalibLim(); beepShort(5); } } else if (cnt_press > 8) { // Short press: power off (80 ms debounce) poweroff(); } } #elif defined(VARIANT_TRANSPOTTER) if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } beepShort(5); HAL_Delay(300); if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } beepLong(5); HAL_Delay(350); poweroff(); } else { setDistance += 0.25; if (setDistance > 2.6) { setDistance = 0.5; } beepShort(setDistance / 0.25); saveValue = setDistance * 1000; saveValue_valid = 1; } } #else if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; // disable motors while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released poweroff(); // release power-latch } #endif } /* =========================== Filtering Functions =========================== */ /* Low pass filter fixed-point 32 bits: fixdt(1,32,16) * Max: 32767.99998474121 * Min: -32768 * Res: 1.52587890625e-05 * * Inputs: u = int16 or int32 * Outputs: y = fixdt(1,32,16) * Parameters: coef = fixdt(0,16,16) = [0,65535U] * * Example: * If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point) * filtLowPass16(u, 52429, &y); * yint = (int16_t)(y >> 16); // the integer output is the fixed-point ouput shifted by 16 bits */ void filtLowPass32(int32_t u, uint16_t coef, int32_t *y) { int64_t tmp; tmp = ((int64_t)((u << 4) - (*y >> 12)) * coef) >> 4; tmp = CLAMP(tmp, -2147483648LL, 2147483647LL); // Overflow protection: 2147483647LL = 2^31 - 1 *y = (int32_t)tmp + (*y); } // Old filter // Inputs: u = int16 // Outputs: y = fixdt(1,32,20) // Parameters: coef = fixdt(0,16,16) = [0,65535U] // yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits // void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) { // int32_t tmp; // tmp = (int16_t)(u << 4) - (*y >> 16); // tmp = CLAMP(tmp, -32768, 32767); // Overflow protection // *y = coef * tmp + (*y); // } /* rateLimiter16(int16_t u, int16_t rate, int16_t *y); * Inputs: u = int16 * Outputs: y = fixdt(1,16,4) * Parameters: rate = fixdt(1,16,4) = [0, 32767] Do NOT make rate negative (>32767) */ void rateLimiter16(int16_t u, int16_t rate, int16_t *y) { int16_t q0; int16_t q1; q0 = (u << 4) - *y; if (q0 > rate) { q0 = rate; } else { q1 = -rate; if (q0 < q1) { q0 = q1; } } *y = q0 + *y; } /* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL); * Inputs: rtu_speed, rtu_steer = fixdt(1,16,4) * Outputs: rty_speedR, rty_speedL = int16_t * Parameters: SPEED_COEFFICIENT, STEER_COEFFICIENT = fixdt(0,16,14) */ void mixerFcn(int16_t rtu_speed, int16_t rtu_steer, int16_t *rty_speedR, int16_t *rty_speedL) { int16_t prodSpeed; int16_t prodSteer; int32_t tmp; prodSpeed = (int16_t)((rtu_speed * (int16_t)SPEED_COEFFICIENT) >> 14); prodSteer = (int16_t)((rtu_steer * (int16_t)STEER_COEFFICIENT) >> 14); tmp = prodSpeed - prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedR = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedR = CLAMP(*rty_speedR, INPUT_MIN, INPUT_MAX); tmp = prodSpeed + prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedL = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedL = CLAMP(*rty_speedL, INPUT_MIN, INPUT_MAX); } /* =========================== Multiple Tap Function =========================== */ /* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) * This function detects multiple tap presses, such as double tapping, triple tapping, etc. * Inputs: u = int16_t (input signal); timeNow = uint32_t (current time) * Outputs: x->b_multipleTap (get the output here) */ void multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) { uint8_t b_timeout; uint8_t b_hyst; uint8_t b_pulse; uint8_t z_pulseCnt; uint8_t z_pulseCntRst; uint32_t t_time; // Detect hysteresis if (x->b_hysteresis) { b_hyst = (u > MULTIPLE_TAP_LO); } else { b_hyst = (u > MULTIPLE_TAP_HI); } // Detect pulse b_pulse = (b_hyst != x->b_hysteresis); // Save time when first pulse is detected if (b_hyst && b_pulse && (x->z_pulseCntPrev == 0)) { t_time = timeNow; } else { t_time = x->t_timePrev; } // Create timeout boolean b_timeout = (timeNow - t_time > MULTIPLE_TAP_TIMEOUT); // Create pulse counter if ((!b_hyst) && (x->z_pulseCntPrev == 0)) { z_pulseCnt = 0U; } else { z_pulseCnt = b_pulse; } // Reset counter if we detected complete tap presses OR there is a timeout if ((x->z_pulseCntPrev >= MULTIPLE_TAP_NR) || b_timeout) { z_pulseCntRst = 0U; } else { z_pulseCntRst = x->z_pulseCntPrev; } z_pulseCnt = z_pulseCnt + z_pulseCntRst; // Check if complete tap presses are detected AND no timeout if ((z_pulseCnt >= MULTIPLE_TAP_NR) && (!b_timeout)) { x->b_multipleTap = !x->b_multipleTap; // Toggle output } // Update states x->z_pulseCntPrev = z_pulseCnt; x->b_hysteresis = b_hyst; x->t_timePrev = t_time; }