/** ****************************************************************************** * @file stm32f1xx_hal_dac_ex.c * @author MCD Application Team * @version V1.1.1 * @date 12-May-2017 * @brief DAC HAL module driver. * This file provides firmware functions to manage the following * functionalities of DAC extension peripheral: * + Extended features functions * * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] (+) When Dual mode is enabled (i.e DAC Channel1 and Channel2 are used simultaneously) : Use HAL_DACEx_DualGetValue() to get digital data to be converted and use HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in Channel 1 and Channel 2. (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" /** @addtogroup STM32F1xx_HAL_Driver * @{ */ /** @defgroup DACEx DACEx * @brief DACEx driver module * @{ */ #ifdef HAL_DAC_MODULE_ENABLED #if defined (STM32F100xB) || defined (STM32F100xE) || defined (STM32F101xE) || defined (STM32F101xG) || defined (STM32F103xE) || defined (STM32F103xG) || defined (STM32F105xC) || defined (STM32F107xC) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup DACEx_Exported_Functions DACEx Exported Functions * @{ */ /** @defgroup DACEx_Exported_Functions_Group1 Extended features functions * @brief Extended features functions * @verbatim ============================================================================== ##### Extended features functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Start conversion. (+) Stop conversion. (+) Start conversion and enable DMA transfer. (+) Stop conversion and disable DMA transfer. (+) Get result of conversion. (+) Get result of dual mode conversion. @endverbatim * @{ */ /** * @brief Returns the last data output value of the selected DAC channel. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval The selected DAC channel data output value. */ uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac) { uint32_t tmp = 0U; tmp |= hdac->Instance->DOR1; tmp |= hdac->Instance->DOR2 << 16U; /* Returns the DAC channel data output register value */ return tmp; } /** * @brief Enables or disables the selected DAC channel wave generation. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel: The selected DAC channel. * This parameter can be one of the following values: * DAC_CHANNEL_1 / DAC_CHANNEL_2 * @param Amplitude: Select max triangle amplitude. * This parameter can be one of the following values: * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 * @retval HAL status */ HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; /* Enable the selected wave generation for the selected DAC channel */ MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1)|(DAC_CR_MAMP1))<<Channel, (DAC_CR_WAVE1_1 | Amplitude) << Channel); /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Enables or disables the selected DAC channel wave generation. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel: The selected DAC channel. * This parameter can be one of the following values: * DAC_CHANNEL_1 / DAC_CHANNEL_2 * @param Amplitude: Unmask DAC channel LFSR for noise wave generation. * This parameter can be one of the following values: * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation * @retval HAL status */ HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; /* Enable the selected wave generation for the selected DAC channel */ MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1)|(DAC_CR_MAMP1))<<Channel, (DAC_CR_WAVE1_0 | Amplitude) << Channel); /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } /** * @brief Set the specified data holding register value for dual DAC channel. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Alignment: Specifies the data alignment for dual channel DAC. * This parameter can be one of the following values: * DAC_ALIGN_8B_R: 8bit right data alignment selected * DAC_ALIGN_12B_L: 12bit left data alignment selected * DAC_ALIGN_12B_R: 12bit right data alignment selected * @param Data1: Data for DAC Channel2 to be loaded in the selected data holding register. * @param Data2: Data for DAC Channel1 to be loaded in the selected data holding register. * @note In dual mode, a unique register access is required to write in both * DAC channels at the same time. * @retval HAL status */ HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2) { uint32_t data = 0U, tmp = 0U; /* Check the parameters */ assert_param(IS_DAC_ALIGN(Alignment)); assert_param(IS_DAC_DATA(Data1)); assert_param(IS_DAC_DATA(Data2)); /* Calculate and set dual DAC data holding register value */ if (Alignment == DAC_ALIGN_8B_R) { data = ((uint32_t)Data2 << 8U) | Data1; } else { data = ((uint32_t)Data2 << 16U) | Data1; } tmp = (uint32_t)hdac->Instance; tmp += DAC_DHR12RD_ALIGNMENT(Alignment); /* Set the dual DAC selected data holding register */ *(__IO uint32_t *)tmp = data; /* Return function status */ return HAL_OK; } /** * @brief Conversion complete callback in non blocking mode for Channel2 * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DACEx_ConvCpltCallbackCh2 could be implemented in the user file */ } /** * @brief Conversion half DMA transfer callback in non blocking mode for Channel2 * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file */ } /** * @brief Error DAC callback for Channel2. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file */ } #if defined (STM32F100xB) || defined (STM32F100xE) /** * @brief DMA underrun DAC callback for channel1. * Note: For STM32F100x devices with specific feature: DMA underrun. * On these devices, this function uses the interruption of DMA * underrun. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file */ } /** * @brief DMA underrun DAC callback for channel2. * Note: For STM32F100x devices with specific feature: DMA underrun. * On these devices, this function uses the interruption of DMA * underrun. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ __weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac) { /* Prevent unused argument(s) compilation warning */ UNUSED(hdac); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file */ } #endif /* STM32F100xB) || defined (STM32F100xE) */ /** * @} */ #if defined (STM32F100xB) || defined (STM32F100xE) /** * @brief Enables DAC and starts conversion of channel. * Note: For STM32F100x devices with specific feature: DMA underrun. * On these devices, this function enables the interruption of DMA * underrun. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel: The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @param pData: The destination peripheral Buffer address. * @param Length: The length of data to be transferred from memory to DAC peripheral * @param Alignment: Specifies the data alignment for DAC channel. * This parameter can be one of the following values: * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) { uint32_t tmpreg = 0U; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); assert_param(IS_DAC_ALIGN(Alignment)); /* Process locked */ __HAL_LOCK(hdac); /* Change DAC state */ hdac->State = HAL_DAC_STATE_BUSY; if(Channel == DAC_CHANNEL_1) { /* Set the DMA transfer complete callback for channel1 */ hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; /* Set the DMA half transfer complete callback for channel1 */ hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; /* Set the DMA error callback for channel1 */ hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; /* Enable the selected DAC channel1 DMA request */ SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); /* Case of use of channel 1 */ switch(Alignment) { case DAC_ALIGN_12B_R: /* Get DHR12R1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12R1; break; case DAC_ALIGN_12B_L: /* Get DHR12L1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12L1; break; case DAC_ALIGN_8B_R: /* Get DHR8R1 address */ tmpreg = (uint32_t)&hdac->Instance->DHR8R1; break; default: break; } } else { /* Set the DMA transfer complete callback for channel2 */ hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; /* Set the DMA half transfer complete callback for channel2 */ hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; /* Set the DMA error callback for channel2 */ hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; /* Enable the selected DAC channel2 DMA request */ SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN2); /* Case of use of channel 2 */ switch(Alignment) { case DAC_ALIGN_12B_R: /* Get DHR12R2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12R2; break; case DAC_ALIGN_12B_L: /* Get DHR12L2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR12L2; break; case DAC_ALIGN_8B_R: /* Get DHR8R2 address */ tmpreg = (uint32_t)&hdac->Instance->DHR8R2; break; default: break; } } /* Enable the DMA channel */ if(Channel == DAC_CHANNEL_1) { /* Enable the DAC DMA underrun interrupt */ __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); /* Enable the DMA channel */ HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); } else { /* Enable the DAC DMA underrun interrupt */ __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); /* Enable the DMA channel */ HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); } /* Enable the Peripharal */ __HAL_DAC_ENABLE(hdac, Channel); /* Process Unlocked */ __HAL_UNLOCK(hdac); /* Return function status */ return HAL_OK; } #endif /* STM32F100xB) || defined (STM32F100xE) */ #if defined (STM32F100xB) || defined (STM32F100xE) /** * @brief Disables DAC and stop conversion of channel. * Note: For STM32F100x devices with specific feature: DMA underrun. * On these devices, this function disables the interruption of DMA * underrun. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @param Channel: The selected DAC channel. * This parameter can be one of the following values: * @arg DAC_CHANNEL_1: DAC Channel1 selected * @arg DAC_CHANNEL_2: DAC Channel2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(Channel)); /* Disable the selected DAC channel DMA request */ hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel); /* Disable the Peripharal */ __HAL_DAC_DISABLE(hdac, Channel); /* Disable the DMA Channel */ /* Channel1 is used */ if(Channel == DAC_CHANNEL_1) { /* Disable the DMA channel */ status = HAL_DMA_Abort(hdac->DMA_Handle1); /* Disable the DAC DMA underrun interrupt */ __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1); } else /* Channel2 is used for */ { /* Disable the DMA channel */ status = HAL_DMA_Abort(hdac->DMA_Handle2); /* Disable the DAC DMA underrun interrupt */ __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR2); } /* Check if DMA Channel effectively disabled */ if(status != HAL_OK) { /* Update ADC state machine to error */ hdac->State = HAL_DAC_STATE_ERROR; } else { /* Change DAC state */ hdac->State = HAL_DAC_STATE_READY; } /* Return function status */ return status; } #endif /* STM32F100xB) || defined (STM32F100xE) */ #if defined (STM32F100xB) || defined (STM32F100xE) /** * @brief Handles DAC interrupt request * Note: For STM32F100x devices with specific feature: DMA underrun. * On these devices, this function uses the interruption of DMA * underrun. * @param hdac: pointer to a DAC_HandleTypeDef structure that contains * the configuration information for the specified DAC. * @retval None */ void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) { if(__HAL_DAC_GET_IT_SOURCE(hdac, DAC_IT_DMAUDR1)) { /* Check underrun flag of DAC channel 1 */ if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) { /* Change DAC state to error state */ hdac->State = HAL_DAC_STATE_ERROR; /* Set DAC error code to chanel1 DMA underrun error */ SET_BIT(hdac->ErrorCode, HAL_DAC_ERROR_DMAUNDERRUNCH1); /* Clear the underrun flag */ __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); /* Disable the selected DAC channel1 DMA request */ CLEAR_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); /* Error callback */ HAL_DAC_DMAUnderrunCallbackCh1(hdac); } } if(__HAL_DAC_GET_IT_SOURCE(hdac, DAC_IT_DMAUDR2)) { /* Check underrun flag of DAC channel 2 */ if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR2)) { /* Change DAC state to error state */ hdac->State = HAL_DAC_STATE_ERROR; /* Set DAC error code to channel2 DMA underrun error */ SET_BIT(hdac->ErrorCode, HAL_DAC_ERROR_DMAUNDERRUNCH2); /* Clear the underrun flag */ __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2); /* Disable the selected DAC channel1 DMA request */ CLEAR_BIT(hdac->Instance->CR, DAC_CR_DMAEN2); /* Error callback */ HAL_DACEx_DMAUnderrunCallbackCh2(hdac); } } } #endif /* STM32F100xB || STM32F100xE */ /** * @} */ /** @defgroup DACEx_Private_Functions DACEx Private Functions * @{ */ /** * @brief DMA conversion complete callback. * @param hdma: pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; HAL_DACEx_ConvCpltCallbackCh2(hdac); hdac->State= HAL_DAC_STATE_READY; } /** * @brief DMA half transfer complete callback. * @param hdma: pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Conversion complete callback */ HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); } /** * @brief DMA error callback * @param hdma: pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma) { DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Set DAC error code to DMA error */ hdac->ErrorCode |= HAL_DAC_ERROR_DMA; HAL_DACEx_ErrorCallbackCh2(hdac); hdac->State= HAL_DAC_STATE_READY; } /** * @} */ #endif /* STM32F100xB || STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */ #endif /* HAL_DAC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/