/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* tim1 master, enable -> trgo tim8, gated slave mode, trgo by tim1 trgo. overflow -> trgo adc1,adc2 triggered by tim8 trgo adc 1,2 dual mode ADC1 ADC2 R_Blau PC4 CH14 R_Gelb PC5 CH15 L_GrĂ¼n PA0 CH01 L_Blau PC3 CH13 R_DC PC1 CH11 L_DC PC0 CH10 BAT PC2 CH12 L_TX PA2 CH02 BAT PC2 CH12 L_RX PA3 CH03 pb10 usart3 dma1 channel2/3 */ #include "defines.h" #include "config.h" #include "setup.h" TIM_HandleTypeDef htim_right; TIM_HandleTypeDef htim_left; ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; I2C_HandleTypeDef hi2c2; UART_HandleTypeDef huart2; UART_HandleTypeDef huart3; DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart2_tx; DMA_HandleTypeDef hdma_usart3_rx; DMA_HandleTypeDef hdma_usart3_tx; volatile adc_buf_t adc_buffer; #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) /* USART2 init function */ void UART2_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA1_Channel6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); /* DMA1_Channel7_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); huart2.Instance = USART2; huart2.Init.BaudRate = USART2_BAUD; huart2.Init.WordLength = USART2_WORDLENGTH; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart2); } #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) /* USART3 init function */ void UART3_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); huart3.Instance = USART3; huart3.Init.BaudRate = USART3_BAUD; huart3.Init.WordLength = USART3_WORDLENGTH; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart3); } #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) || \ defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(uartHandle->Instance==USART2) { /* USER CODE BEGIN USART2_MspInit 0 */ /* USER CODE END USART2_MspInit 0 */ /* USART2 clock enable */ __HAL_RCC_USART2_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**USART2 GPIO Configuration PA2 ------> USART2_TX PA3 ------> USART2_RX */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USART2 DMA Init */ /* USART2_RX Init */ hdma_usart2_rx.Instance = DMA1_Channel6; hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_rx); __HAL_LINKDMA(uartHandle,hdmarx,hdma_usart2_rx); /* USART2_TX Init */ hdma_usart2_tx.Instance = DMA1_Channel7; hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_tx.Init.Mode = DMA_NORMAL; hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_tx); __HAL_LINKDMA(uartHandle,hdmatx,hdma_usart2_tx); /* USART2 interrupt Init */ HAL_NVIC_SetPriority(USART2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART2_IRQn); /* USER CODE BEGIN USART2_MspInit 1 */ __HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt /* USER CODE END USART2_MspInit 1 */ } else if(uartHandle->Instance==USART3) { /* USER CODE BEGIN USART3_MspInit 0 */ /* USER CODE END USART3_MspInit 0 */ /* USART3 clock enable */ __HAL_RCC_USART3_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**USART3 GPIO Configuration PB10 ------> USART3_TX PB11 ------> USART3_RX */ GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USART3 DMA Init */ /* USART3_RX Init */ hdma_usart3_rx.Instance = DMA1_Channel3; hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart3_rx.Init.Mode = DMA_CIRCULAR; hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart3_rx); __HAL_LINKDMA(uartHandle,hdmarx,hdma_usart3_rx); /* USART3_TX Init */ hdma_usart3_tx.Instance = DMA1_Channel2; hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart3_tx.Init.Mode = DMA_NORMAL; hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart3_tx); __HAL_LINKDMA(uartHandle,hdmatx,hdma_usart3_tx); /* USART3 interrupt Init */ HAL_NVIC_SetPriority(USART3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART3_IRQn); /* USER CODE BEGIN USART3_MspInit 1 */ __HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt /* USER CODE END USART3_MspInit 1 */ } } void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle) { if(uartHandle->Instance==USART2) { /* USER CODE BEGIN USART2_MspDeInit 0 */ /* USER CODE END USART2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART2_CLK_DISABLE(); /**USART2 GPIO Configuration PA2 ------> USART2_TX PA3 ------> USART2_RX */ HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3); /* USART2 DMA DeInit */ HAL_DMA_DeInit(uartHandle->hdmarx); HAL_DMA_DeInit(uartHandle->hdmatx); /* USART2 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART2_IRQn); /* USER CODE BEGIN USART2_MspDeInit 1 */ /* USER CODE END USART2_MspDeInit 1 */ } else if(uartHandle->Instance==USART3) { /* USER CODE BEGIN USART3_MspDeInit 0 */ /* USER CODE END USART3_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART3_CLK_DISABLE(); /**USART3 GPIO Configuration PB10 ------> USART3_TX PB11 ------> USART3_RX */ HAL_GPIO_DeInit(GPIOB, GPIO_PIN_10|GPIO_PIN_11); /* USART3 DMA DeInit */ HAL_DMA_DeInit(uartHandle->hdmarx); HAL_DMA_DeInit(uartHandle->hdmatx); /* USART3 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART3_IRQn); /* USER CODE BEGIN USART3_MspDeInit 1 */ /* USER CODE END USART3_MspDeInit 1 */ } } #endif DMA_HandleTypeDef hdma_i2c2_rx; DMA_HandleTypeDef hdma_i2c2_tx; void I2C_Init(void) { __HAL_RCC_I2C2_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA1_Channel4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 1, 4); HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn); /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 1, 3); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); hi2c2.Instance = I2C2; hi2c2.Init.ClockSpeed = 200000; hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c2.Init.OwnAddress1 = 0; hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c2.Init.OwnAddress2 = 0; hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; HAL_I2C_Init(&hi2c2); GPIO_InitTypeDef GPIO_InitStruct; __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /* USER CODE BEGIN I2C2_MspInit 0 */ /* USER CODE END I2C2_MspInit 0 */ /**I2C2 GPIO Configuration PB10 ------> I2C2_SCL PB11 ------> I2C2_SDA */ GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* Peripheral clock enable */ __HAL_RCC_I2C2_CLK_ENABLE(); /* Peripheral DMA init*/ hdma_i2c2_rx.Instance = DMA1_Channel5; hdma_i2c2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_i2c2_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_i2c2_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_i2c2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_i2c2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_i2c2_rx.Init.Mode = DMA_NORMAL; hdma_i2c2_rx.Init.Priority = DMA_PRIORITY_MEDIUM; HAL_DMA_Init(&hdma_i2c2_rx); __HAL_LINKDMA(&hi2c2,hdmarx,hdma_i2c2_rx); hdma_i2c2_tx.Instance = DMA1_Channel4; hdma_i2c2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_i2c2_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_i2c2_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_i2c2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_i2c2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_i2c2_tx.Init.Mode = DMA_NORMAL; hdma_i2c2_tx.Init.Priority = DMA_PRIORITY_MEDIUM; HAL_DMA_Init(&hdma_i2c2_tx); __HAL_LINKDMA(&hi2c2,hdmatx,hdma_i2c2_tx); /* Peripheral interrupt init */ HAL_NVIC_SetPriority(I2C2_EV_IRQn, 0, 0); HAL_NVIC_EnableIRQ(I2C2_EV_IRQn); HAL_NVIC_SetPriority(I2C2_ER_IRQn, 0, 0); HAL_NVIC_EnableIRQ(I2C2_ER_IRQn); /* USER CODE BEGIN I2C2_MspInit 1 */ /* USER CODE END I2C2_MspInit 1 */ } void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = LEFT_HALL_U_PIN; HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_V_PIN; HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_W_PIN; HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN; HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN; HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN; HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pin = CHARGER_PIN; HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct); #if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT) GPIO_InitStruct.Pin = BUTTON1_PIN; HAL_GPIO_Init(BUTTON1_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUTTON2_PIN; HAL_GPIO_Init(BUTTON2_PORT, &GPIO_InitStruct); #endif GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pin = BUTTON_PIN; HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pin = LED_PIN; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUZZER_PIN; HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = OFF_PIN; HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN; HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_U_CUR_PIN; HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_V_CUR_PIN; HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN; HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN; HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN; HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = DCLINK_PIN; HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct); //Analog in #if !defined(SUPPORT_BUTTONS_LEFT) GPIO_InitStruct.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); #endif GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN; HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN; HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN; HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN; HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN; HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN; HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN; HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN; HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN; HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN; HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN; HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN; HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct); } void MX_TIM_Init(void) { __HAL_RCC_TIM1_CLK_ENABLE(); __HAL_RCC_TIM8_CLK_ENABLE(); TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig; TIM_SlaveConfigTypeDef sTimConfig; htim_right.Instance = RIGHT_TIM; htim_right.Init.Prescaler = 0; htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_right.Init.Period = 64000000 / 2 / PWM_FREQ; htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_right.Init.RepetitionCounter = 0; htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_right); sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig); htim_left.Instance = LEFT_TIM; htim_left.Init.Prescaler = 0; htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_left.Init.Period = 64000000 / 2 / PWM_FREQ; htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_left.Init.RepetitionCounter = 0; htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_left); sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig); sTimConfig.InputTrigger = TIM_TS_ITR0; sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED; HAL_TIM_SlaveConfigSynchronization(&htim_left, &sTimConfig); // Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete. // This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig); LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3); htim_left.Instance->RCR = 1; __HAL_TIM_ENABLE(&htim_right); } void MX_ADC1_Init(void) { ADC_MultiModeTypeDef multimode; ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc1); /**Enable or disable the remapping of ADC1_ETRGREG: * ADC1 External Event regular conversion is connected to TIM8 TRG0 */ __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE(); /**Configure the ADC multi-mode */ multimode.Mode = ADC_DUALMODE_REGSIMULT; HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc1, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc1, &sConfig); //temperature requires at least 17.1uS sampling time sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc1, &sConfig); hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE; __HAL_ADC_ENABLE(&hadc1); __HAL_RCC_DMA1_CLK_ENABLE(); DMA1_Channel1->CCR = 0; DMA1_Channel1->CNDTR = 5; DMA1_Channel1->CPAR = (uint32_t) & (ADC1->DR); DMA1_Channel1->CMAR = (uint32_t)&adc_buffer; DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE; DMA1_Channel1->CCR |= DMA_CCR_EN; HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } /* ADC2 init function */ void MX_ADC2_Init(void) { ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC2_CLK_ENABLE(); // HAL_ADC_DeInit(&hadc2); // hadc2.Instance->CR2 = 0; /**Common config */ hadc2.Instance = ADC2; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc2); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc2, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc2, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; // Commented-out to make `uart-l-rx` ADC sample time the same as `uart-l-tx` sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc2, &sConfig); hadc2.Instance->CR2 |= ADC_CR2_DMA; __HAL_ADC_ENABLE(&hadc2); }