/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * Copyright (C) 2019-2020 Emanuel FERU * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include // for abs() #include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" #include "util.h" #include "BLDC_controller.h" /* BLDC's header file */ #include "rtwtypes.h" #include "comms.h" #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) #include "hd44780.h" #endif void SystemClock_Config(void); //------------------------------------------------------------------------ // Global variables set externally //------------------------------------------------------------------------ extern TIM_HandleTypeDef htim_left; extern TIM_HandleTypeDef htim_right; extern ADC_HandleTypeDef hadc1; extern ADC_HandleTypeDef hadc2; extern volatile adc_buf_t adc_buffer; #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) extern LCD_PCF8574_HandleTypeDef lcd; extern uint8_t LCDerrorFlag; #endif extern UART_HandleTypeDef huart2; extern UART_HandleTypeDef huart3; volatile uint8_t uart_buf[200]; // Matlab defines - from auto-code generation //--------------- extern P rtP_Left; /* Block parameters (auto storage) */ extern P rtP_Right; /* Block parameters (auto storage) */ extern ExtY rtY_Left; /* External outputs */ extern ExtY rtY_Right; /* External outputs */ //--------------- extern uint8_t inIdx; // input index used for dual-inputs extern uint8_t inIdx_prev; extern InputStruct input1[]; // input structure extern InputStruct input2[]; // input structure extern int16_t speedAvg; // Average measured speed extern int16_t speedAvgAbs; // Average measured speed in absolute extern volatile uint32_t timeoutCntGen; // Timeout counter for the General timeout (PPM, PWM, Nunchuk) extern volatile uint8_t timeoutFlgGen; // Timeout Flag for the General timeout (PPM, PWM, Nunchuk) extern uint8_t timeoutFlgADC; // Timeout Flag for for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data) extern uint8_t timeoutFlgSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) extern volatile int pwml; // global variable for pwm left. -1000 to 1000 extern volatile int pwmr; // global variable for pwm right. -1000 to 1000 extern uint8_t enable; // global variable for motor enable extern int16_t batVoltage; // global variable for battery voltage extern int16_t curL_DC; // global variable for left motor current. to get current in Ampere divide by A2BIT_CONV extern int16_t curR_DC; // global variable for right motor current extern int16_t curL_phaA; extern int16_t curL_phaB; extern int16_t curR_phaA; extern int16_t curR_phaB; #if defined(SIDEBOARD_SERIAL_USART2) extern SerialSideboard Sideboard_L; #endif #if defined(SIDEBOARD_SERIAL_USART3) extern SerialSideboard Sideboard_R; #endif #if (defined(CONTROL_PPM_LEFT) && defined(DEBUG_SERIAL_USART3)) || (defined(CONTROL_PPM_RIGHT) && defined(DEBUG_SERIAL_USART2)) extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1]; #endif #if (defined(CONTROL_PWM_LEFT) && defined(DEBUG_SERIAL_USART3)) || (defined(CONTROL_PWM_RIGHT) && defined(DEBUG_SERIAL_USART2)) extern volatile uint16_t pwm_captured_ch1_value; extern volatile uint16_t pwm_captured_ch2_value; #endif //------------------------------------------------------------------------ // Global variables set here in main.c //------------------------------------------------------------------------ uint8_t backwardDrive; volatile uint32_t main_loop_counter; //------------------------------------------------------------------------ // Local variables //------------------------------------------------------------------------ #if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) typedef struct{ uint16_t start; int16_t cmd1; int16_t cmd2; int16_t speedL_meas; int16_t speedR_meas; int16_t batVoltage; int16_t boardTemp; int16_t curL_DC; int16_t curR_DC; uint16_t cmdLed; uint16_t checksum; } SerialFeedback; static SerialFeedback Feedback; #endif #if defined(FEEDBACK_SERIAL_USART2) static uint8_t sideboard_leds_L; #endif #if defined(FEEDBACK_SERIAL_USART3) static uint8_t sideboard_leds_R; #endif #ifdef VARIANT_TRANSPOTTER extern uint8_t nunchuk_connected; extern float setDistance; static uint8_t checkRemote = 0; static uint16_t distance; static float steering; static int distanceErr; static int lastDistance = 0; static uint16_t transpotter_counter = 0; #endif static int16_t speed; // local variable for speed. -1000 to 1000 #ifndef VARIANT_TRANSPOTTER //static int16_t steer; // local variable for steering. -1000 to 1000 //static int16_t steerRateFixdt; // local fixed-point variable for steering rate limiter //static int16_t speedRateFixdt; // local fixed-point variable for speed rate limiter static int16_t speedLeftRateFixdt; // local fixed-point variable for steering rate limiter static int16_t speedRightRateFixdt; // local fixed-point variable for speed rate limiter //static int32_t steerFixdt; // local fixed-point variable for steering low-pass filter //static int32_t speedFixdt; // local fixed-point variable for speed low-pass filter static int32_t speedLeftFixdt; // local fixed-point variable for speedLeft low-pass filter static int32_t speedRightFixdt; // local fixed-point variable for speedRight low-pass filter #endif static uint32_t inactivity_timeout_counter; static MultipleTap MultipleTapBrake; // define multiple tap functionality for the Brake pedal int main(void) { HAL_Init(); __HAL_RCC_AFIO_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); SystemClock_Config(); __HAL_RCC_DMA1_CLK_DISABLE(); MX_GPIO_Init(); MX_TIM_Init(); MX_ADC1_Init(); MX_ADC2_Init(); BLDC_Init(); // BLDC Controller Init HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET); // Activate Latch Input_Lim_Init(); // Input Limitations Init Input_Init(); // Input Init HAL_ADC_Start(&hadc1); HAL_ADC_Start(&hadc2); poweronMelody(); HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_SET); int16_t cmdL = 0, cmdR = 0; int16_t cmdL_prev = 0, cmdR_prev = 0; int16_t speedL = 0, speedR = 0; int32_t board_temp_adcFixdt = adc_buffer.temp << 16; // Fixed-point filter output initialized with current ADC converted to fixed-point int16_t board_temp_adcFilt = adc_buffer.temp; int16_t board_temp_deg_c; // Loop until button is released while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } while(1) { HAL_Delay(DELAY_IN_MAIN_LOOP); // delay in ms readCommand(); // Read Command: input1[inIdx].cmd, input2[inIdx].cmd calcAvgSpeed(); // Calculate average measured speed: speedAvg, speedAvgAbs #ifndef VARIANT_TRANSPOTTER // ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) ####### if (enable == 0 && (!rtY_Left.z_errCode && !rtY_Right.z_errCode) && (input1[inIdx].cmd > -50 && input1[inIdx].cmd < 50) && (input2[inIdx].cmd > -50 && input2[inIdx].cmd < 50)){ beepShort(6); // make 2 beeps indicating the motor enable beepShort(4); HAL_Delay(100); //steerFixdt = speedFixdt = 0; // reset filters speedLeftFixdt = speedRightFixdt = 0; //reset filters enable = 1; // enable motors #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) printf("-- Motors enabled --\r\n"); #endif } // ####### VARIANT_HOVERCAR ####### #if defined(VARIANT_HOVERCAR) || defined(VARIANT_SKATEBOARD) || defined(ELECTRIC_BRAKE_ENABLE) uint16_t speedBlend; // Calculate speed Blend, a number between [0, 1] in fixdt(0,16,15) speedBlend = (uint16_t)(((CLAMP(speedAvgAbs,10,60) - 10) << 15) / 50); // speedBlend [0,1] is within [10 rpm, 60rpm] #endif #ifdef STANDSTILL_HOLD_ENABLE standstillHold(); // Apply Standstill Hold functionality. Only available and makes sense for VOLTAGE or TORQUE Mode #endif #ifdef VARIANT_HOVERCAR if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input) if (speedAvgAbs < 60) { // Check if Hovercar is physically close to standstill to enable Double tap detection on Brake pedal for Reverse functionality multipleTapDet(input1[inIdx].cmd, HAL_GetTick(), &MultipleTapBrake); // Brake pedal in this case is "input1" variable } if (input1[inIdx].cmd > 30) { // If Brake pedal (input1) is pressed, bring to 0 also the Throttle pedal (input2) to avoid "Double pedal" driving input2[inIdx].cmd = (int16_t)((input2[inIdx].cmd * speedBlend) >> 15); cruiseControl((uint8_t)rtP_Left.b_cruiseCtrlEna); // Cruise control deactivated by Brake pedal if it was active } } #endif #ifdef ELECTRIC_BRAKE_ENABLE electricBrake(speedBlend, MultipleTapBrake.b_multipleTap); // Apply Electric Brake. Only available and makes sense for TORQUE Mode #endif #ifdef VARIANT_HOVERCAR if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input) if (speedAvg > 0) { // Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving by Brake pedal) input1[inIdx].cmd = (int16_t)((-input1[inIdx].cmd * speedBlend) >> 15); } else { input1[inIdx].cmd = (int16_t)(( input1[inIdx].cmd * speedBlend) >> 15); } } #endif #ifdef VARIANT_SKATEBOARD if (input2[inIdx].cmd < 0) { // When Throttle is negative, it acts as brake. This condition is to make sure it goes to 0 as we reach standstill (to avoid Reverse driving) if (speedAvg > 0) { // Make sure the braking is opposite to the direction of motion input2[inIdx].cmd = (int16_t)(( input2[inIdx].cmd * speedBlend) >> 15); } else { input2[inIdx].cmd = (int16_t)((-input2[inIdx].cmd * speedBlend) >> 15); } } #endif // ####### LOW-PASS FILTER ####### /* rateLimiter16(input1[inIdx].cmd , RATE, &steerRateFixdt); rateLimiter16(input2[inIdx].cmd , RATE, &speedRateFixdt); filtLowPass32(steerRateFixdt >> 4, FILTER, &steerFixdt); filtLowPass32(speedRateFixdt >> 4, FILTER, &speedFixdt); steer = (int16_t)(steerFixdt >> 16); // convert fixed-point to integer speed = (int16_t)(speedFixdt >> 16); // convert fixed-point to integer */ rateLimiter16(input1[inIdx].cmd , RATE, &speedLeftRateFixdt); rateLimiter16(input2[inIdx].cmd , RATE, &speedRightRateFixdt); filtLowPass32(speedLeftRateFixdt >> 4, FILTER, &speedLeftFixdt); filtLowPass32(speedRightRateFixdt >> 4, FILTER, &speedRightFixdt); speedL = (int16_t)(speedLeftFixdt >> 16); // convert fixed-point to integer speedR = (int16_t)(speedRightFixdt >> 16); // convert fixed-point to integer // ####### VARIANT_HOVERCAR ####### #ifdef VARIANT_HOVERCAR if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input) if (!MultipleTapBrake.b_multipleTap) { // Check driving direction speed = steer + speed; // Forward driving: in this case steer = Brake, speed = Throttle } else { speed = steer - speed; // Reverse driving: in this case steer = Brake, speed = Throttle } steer = 0; // Do not apply steering to avoid side effects if STEER_COEFFICIENT is NOT 0 } #endif // ####### MIXER ####### // cmdR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), INPUT_MIN, INPUT_MAX); // cmdL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), INPUT_MIN, INPUT_MAX); //mixerFcn(speed << 4, steer << 4, &cmdR, &cmdL); // This function implements the equations above int16_t _temp; mixerFcn(speedL << 4, ((int16_t)0) << 4, &cmdL, &_temp); // This function implements the equations above mixerFcn(speedR << 4, ((int16_t)0) << 4, &cmdR, &_temp); // This function implements the equations above // ####### SET OUTPUTS (if the target change is less than +/- 100) ####### if ((cmdL > cmdL_prev-100 && cmdL < cmdL_prev+100) && (cmdR > cmdR_prev-100 && cmdR < cmdR_prev+100)) { #ifdef INVERT_R_DIRECTION pwmr = cmdR; #else pwmr = -cmdR; #endif #ifdef INVERT_L_DIRECTION pwml = -cmdL; #else pwml = cmdL; #endif } #endif #ifdef VARIANT_TRANSPOTTER distance = CLAMP(input1[inIdx].cmd - 180, 0, 4095); steering = (input2[inIdx].cmd - 2048) / 2048.0; distanceErr = distance - (int)(setDistance * 1345); if (nunchuk_connected == 0) { cmdL = cmdL * 0.8f + (CLAMP(distanceErr + (steering*((float)MAX(ABS(distanceErr), 50)) * ROT_P), -850, 850) * -0.2f); cmdR = cmdR * 0.8f + (CLAMP(distanceErr - (steering*((float)MAX(ABS(distanceErr), 50)) * ROT_P), -850, 850) * -0.2f); if ((cmdL < cmdL_prev + 50 && cmdL > cmdL_prev - 50) && (cmdR < cmdR_prev + 50 && cmdR > cmdR_prev - 50)) { if (distanceErr > 0) { enable = 1; } if (distanceErr > -300) { #ifdef INVERT_R_DIRECTION pwmr = cmdR; #else pwmr = -cmdR; #endif #ifdef INVERT_L_DIRECTION pwml = -cmdL; #else pwml = cmdL; #endif if (checkRemote) { if (!HAL_GPIO_ReadPin(LED_PORT, LED_PIN)) { //enable = 1; } else { enable = 0; } } } else { enable = 0; } } timeoutCntGen = 0; timeoutFlgGen = 0; } if (timeoutFlgGen) { pwml = 0; pwmr = 0; enable = 0; #ifdef SUPPORT_LCD LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:"); LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m("); LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)"); #endif HAL_Delay(1000); nunchuk_connected = 0; } if ((distance / 1345.0) - setDistance > 0.5 && (lastDistance / 1345.0) - setDistance > 0.5) { // Error, robot too far away! enable = 0; beepLong(5); #ifdef SUPPORT_LCD LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Emergency Off!"); LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Keeper too fast."); #endif poweroff(); } #ifdef SUPPORT_NUNCHUK if (transpotter_counter % 500 == 0) { if (nunchuk_connected == 0 && enable == 0) { if (Nunchuk_Ping()) { HAL_Delay(500); Nunchuk_Init(); #ifdef SUPPORT_LCD LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Nunchuk Control"); #endif timeoutCntGen = 0; timeoutFlgGen = 0; HAL_Delay(1000); nunchuk_connected = 1; } } } #endif #ifdef SUPPORT_LCD if (transpotter_counter % 100 == 0) { if (LCDerrorFlag == 1 && enable == 0) { } else { if (nunchuk_connected == 0) { LCD_SetLocation(&lcd, 4, 0); LCD_WriteFloat(&lcd,distance/1345.0,2); LCD_SetLocation(&lcd, 10, 0); LCD_WriteFloat(&lcd,setDistance,2); } LCD_SetLocation(&lcd, 4, 1); LCD_WriteFloat(&lcd,batVoltage, 1); // LCD_SetLocation(&lcd, 11, 1); LCD_WriteFloat(&lcd,MAX(ABS(currentR), ABS(currentL)),2); } } #endif transpotter_counter++; #endif // ####### SIDEBOARDS HANDLING ####### #if defined(SIDEBOARD_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART2) sideboardLeds(&sideboard_leds_L); sideboardSensors((uint8_t)Sideboard_L.sensors); #endif #if defined(SIDEBOARD_SERIAL_USART3) && defined(FEEDBACK_SERIAL_USART3) sideboardLeds(&sideboard_leds_R); sideboardSensors((uint8_t)Sideboard_R.sensors); #endif // ####### CALC BOARD TEMPERATURE ####### filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt); board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 16); // convert fixed-point to integer board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C; // ####### DEBUG SERIAL OUT ####### #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) if (main_loop_counter % 25 == 0) { // Send data periodically every 125 ms #if defined(DEBUG_SERIAL_PROTOCOL) process_debug(); #else printf("in1:%i in2:%i cmdL:%i cmdR:%i BatADC:%i BatV:%i TempADC:%i Temp:%i\r\n", input1[inIdx].raw, // 1: INPUT1 input2[inIdx].raw, // 2: INPUT2 cmdL, // 3: output command: [-1000, 1000] cmdR, // 4: output command: [-1000, 1000] adc_buffer.batt1, // 5: for battery voltage calibration batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC, // 6: for verifying battery voltage calibration board_temp_adcFilt, // 7: for board temperature calibration board_temp_deg_c); // 8: for verifying board temperature calibration #endif } #endif // ####### FEEDBACK SERIAL OUT ####### #if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) if (main_loop_counter % 2 == 0) { // Send data periodically every 10 ms Feedback.start = (uint16_t)SERIAL_START_FRAME; Feedback.cmd1 = (int16_t)input1[inIdx].cmd; Feedback.cmd2 = (int16_t)input2[inIdx].cmd; Feedback.speedR_meas = (int16_t)rtY_Right.n_mot; Feedback.speedL_meas = (int16_t)rtY_Left.n_mot; Feedback.batVoltage = (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); Feedback.boardTemp = (int16_t)board_temp_deg_c; Feedback.curL_DC = (int16_t)curL_DC; //divide by A2BIT_CONV to get current in amperes Feedback.curR_DC = (int16_t)curR_DC; //Feedback.curL_DC = (int16_t)curL_phaA; //Feedback.curR_DC = (int16_t)curL_phaB; #if defined(FEEDBACK_SERIAL_USART2) if(__HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) { Feedback.cmdLed = (uint16_t)sideboard_leds_L; Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR_meas ^ Feedback.speedL_meas ^ Feedback.batVoltage ^ Feedback.boardTemp ^ Feedback.curL_DC ^ Feedback.curR_DC ^ Feedback.cmdLed); HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Feedback, sizeof(Feedback)); } #endif #if defined(FEEDBACK_SERIAL_USART3) if(__HAL_DMA_GET_COUNTER(huart3.hdmatx) == 0) { Feedback.cmdLed = (uint16_t)sideboard_leds_R; Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR_meas ^ Feedback.speedL_meas ^ Feedback.batVoltage ^ Feedback.boardTemp ^ Feedback.curL_DC ^ Feedback.curR_DC ^ Feedback.cmdLed); HAL_UART_Transmit_DMA(&huart3, (uint8_t *)&Feedback, sizeof(Feedback)); } #endif } #endif // ####### POWEROFF BY POWER-BUTTON ####### poweroffPressCheck(); // ####### BEEP AND EMERGENCY POWEROFF ####### if ((TEMP_POWEROFF_ENABLE && board_temp_deg_c >= TEMP_POWEROFF && speedAvgAbs < 20) || (batVoltage < BAT_DEAD && speedAvgAbs < 20)) { // poweroff before mainboard burns OR low bat 3 poweroff(); } else if (rtY_Left.z_errCode || rtY_Right.z_errCode) { // 1 beep (low pitch): Motor error, disable motors enable = 0; beepCount(1, 24, 1); } else if (timeoutFlgADC) { // 2 beeps (low pitch): ADC timeout beepCount(2, 24, 1); } else if (timeoutFlgSerial) { // 3 beeps (low pitch): Serial timeout beepCount(3, 24, 1); } else if (timeoutFlgGen) { // 4 beeps (low pitch): General timeout (PPM, PWM, Nunchuk) beepCount(4, 24, 1); } else if (TEMP_WARNING_ENABLE && board_temp_deg_c >= TEMP_WARNING) { // 5 beeps (low pitch): Mainboard temperature warning beepCount(5, 24, 1); } else if (BAT_LVL1_ENABLE && batVoltage < BAT_LVL1) { // 1 beep fast (medium pitch): Low bat 1 beepCount(0, 10, 6); } else if (BAT_LVL2_ENABLE && batVoltage < BAT_LVL2) { // 1 beep slow (medium pitch): Low bat 2 beepCount(0, 10, 30); } else if (BEEPS_BACKWARD && ((speed < -50 && speedAvg < 0) || MultipleTapBrake.b_multipleTap)) { // 1 beep fast (high pitch): Backward spinning motors beepCount(0, 5, 1); backwardDrive = 1; } else { // do not beep beepCount(0, 0, 0); backwardDrive = 0; } // ####### INACTIVITY TIMEOUT ####### if (abs(cmdL) > 50 || abs(cmdR) > 50) { inactivity_timeout_counter = 0; } else { inactivity_timeout_counter++; } if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms poweroff(); } // HAL_GPIO_TogglePin(LED_PORT, LED_PIN); // This is to measure the main() loop duration with an oscilloscope connected to LED_PIN // Update states inIdx_prev = inIdx; cmdL_prev = cmdL; cmdR_prev = cmdR; main_loop_counter++; } } // =========================================================== /** System Clock Configuration */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; HAL_RCC_OscConfig(&RCC_OscInitStruct); /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; // PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); }