Input Auto-calibration

- mainly rearangement of function
- updated initialization in the auto-calibration function
- added beep for confirmation of Input protection
This commit is contained in:
EmanuelFeru 2020-11-18 19:16:56 +01:00
parent 75082c8333
commit 44befc480a
5 changed files with 307 additions and 327 deletions

View file

@ -166,9 +166,9 @@
// ############################## DEFAULT SETTINGS ############################
// Default settings will be applied at the end of this config file if not set before
#define INACTIVITY_TIMEOUT 8 // Minutes of not driving until poweroff. it is not very precise.
#define BEEPS_BACKWARD 1 // 0 or 1
#define FLASH_WRITE_KEY 0x1234 // Flash writing key, used when writing data to flash memory
#define INACTIVITY_TIMEOUT 8 // Minutes of not driving until poweroff. it is not very precise.
#define BEEPS_BACKWARD 1 // 0 or 1
#define FLASH_WRITE_KEY 0x1233 // Flash memory writing key. Change this key to ignore the input calibrations from the flash memory and use the ones in config.h
/* FILTER is in fixdt(0,16,16): VAL_fixedPoint = VAL_floatingPoint * 2^16. In this case 6553 = 0.1 * 2^16
* Value of COEFFICIENT is in fixdt(1,16,14)
@ -201,7 +201,7 @@
// ############################### DEBUG SERIAL ###############################
/* Connect GND and RX of a 3.3v uart-usb adapter to the left (USART2) or right sensor board cable (USART3)
* Be careful not to use the red wire of the cable. 15v will destroye evrything.
* Be careful not to use the red wire of the cable. 15v will destroy everything.
* If you are using VARIANT_NUNCHUK, disable it temporarily.
* enable DEBUG_SERIAL_USART3 or DEBUG_SERIAL_USART2
* and DEBUG_SERIAL_ASCII use asearial terminal.
@ -210,8 +210,8 @@
* DEBUG_SERIAL_ASCII output is:
* // "1:345 2:1337 3:0 4:0 5:0 6:0 7:0 8:0\r\n"
*
* 1: (int16_t)adc_buffer.l_tx2); ADC1
* 2: (int16_t)adc_buffer.l_rx2); ADC2
* 1: (int16_t)input1); raw input1: ADC1, UART, PWM, PPM, iBUS
* 2: (int16_t)input2); raw input2: ADC2, UART, PWM, PPM, iBUS
* 3: (int16_t)speedR); output command: [-1000, 1000]
* 4: (int16_t)speedL); output command: [-1000, 1000]
* 5: (int16_t)adc_buffer.batt1); Battery adc-value measured by mainboard
@ -252,18 +252,18 @@
*/
#define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2, FEEDBACK_SERIAL_USART2, DEBUG_SERIAL_USART2!
#define ADC_PROTECT_TIMEOUT 100 // ADC Protection: number of wrong / missing input commands before safety state is taken
#define ADC_PROTECT_THRESH 300 // ADC Protection threshold below/above the MIN/MAX ADC values
#define ADC_PROTECT_THRESH 200 // ADC Protection threshold below/above the MIN/MAX ADC values
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN 0 // min ADC1-value while poti at minimum-position (0 - 4095)
#define INPUT1_MID 2048 // mid ADC1-value while poti at minimum-position (ADC1_MIN - ADC1_MAX)
#define INPUT1_MAX 4095 // max ADC1-value while poti at maximum-position (0 - 4095)
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN 0 // min ADC2-value while poti at minimum-position (0 - 4095)
#define INPUT2_MID 2048 // mid ADC2-value while poti at minimum-position (ADC2_MIN - ADC2_MAX)
#define INPUT2_MAX 4095 // max ADC2-value while poti at maximum-position (0 - 4095)
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// #define SUPPORT_BUTTONS_LEFT // use left sensor board cable for button inputs. Disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS_RIGHT // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
#endif
@ -282,18 +282,18 @@
#define FEEDBACK_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used!
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1000 // (0 - 1000)
// #define SUPPORT_BUTTONS_LEFT // use left sensor board cable for button inputs. Disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS_RIGHT // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// #define SUPPORT_BUTTONS_LEFT // use left sensor board cable for button inputs. Disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS_RIGHT // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
#endif
// ######################## END OF VARIANT_USART SETTINGS #########################
@ -301,7 +301,7 @@
// ################################# VARIANT_NUNCHUK SETTINGS ############################
#ifdef VARIANT_NUNCHUK
/* left sensor board cable. USART3
/* on Right sensor cable
* keep cable short, use shielded cable, use ferrits, stabalize voltage in nunchuk,
* use the right one of the 2 types of nunchuks, add i2c pullups.
* use original nunchuk. most clones does not work very well.
@ -309,23 +309,23 @@
*/
#define CONTROL_NUNCHUK // use nunchuk as input. disable FEEDBACK_SERIAL_USART3, DEBUG_SERIAL_USART3!
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1024 // (-1024 - 0)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_MIN -1024 // (-1024 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1024 // (0 - 1024)
#define INPUT1_MAX 1024 // (0 - 1024)
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -1024 // (-1024 - 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_MIN -1024 // (-1024 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1024 // (0 - 1024)
#define INPUT2_MAX 1024 // (0 - 1024)
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// # maybe good for ARMCHAIR #
#define FILTER 3276 // 0.05f
#define SPEED_COEFFICIENT 8192 // 0.5f
#define STEER_COEFFICIENT 62259 // -0.2f
#define FILTER 3276 // 0.05f
#define SPEED_COEFFICIENT 8192 // 0.5f
#define STEER_COEFFICIENT 62259 // -0.2f
#define DEBUG_SERIAL_USART2 // left sensor cable debug
// #define SUPPORT_BUTTONS // Define for Nunchuck buttons support
// #define SUPPORT_BUTTONS // Define for Nunchuck buttons support
#endif
// ############################# END OF VARIANT_NUNCHUK SETTINGS #########################
@ -338,25 +338,25 @@
* https://gist.github.com/peterpoetzi/1b63a4a844162196613871767189bd05
*/
#define CONTROL_PPM_LEFT // use PPM-Sum as input on the LEFT cable . disable CONTROL_SERIAL_USART2!
//#define CONTROL_PPM_RIGHT // use PPM-Sum as input on the RIGHT cable. disable CONTROL_SERIAL_USART3!
// #define CONTROL_PPM_RIGHT // use PPM-Sum as input on the RIGHT cable. disable CONTROL_SERIAL_USART3!
#ifdef CONTROL_PPM_RIGHT
#define DEBUG_SERIAL_USART2 // left sensor cable debug
#else
#define DEBUG_SERIAL_USART3 // right sensor cable debug
#endif
#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.
#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1000 // (0 - 1000)
#define INPUT2_MAX 1000 // (0 - 1000)
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// #define SUPPORT_BUTTONS // Define for PPM buttons support
// #define SUPPORT_BUTTONS_LEFT // use left sensor board cable for button inputs. Disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS_RIGHT // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
@ -378,17 +378,17 @@
#define DEBUG_SERIAL_USART3 // right sensor cable debug
#endif
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1000 // (0 - 1000)
#define INPUT2_MAX 1000 // (0 - 1000)
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define FILTER 6553 // 0.1f [-] fixdt(0,16,16) lower value == softer filter [0, 65535] = [0.0 - 1.0].
#define SPEED_COEFFICIENT 16384 // 1.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14
@ -397,11 +397,6 @@
// #define INVERT_L_DIRECTION
// #define SUPPORT_BUTTONS_LEFT // use left sensor board cable for button inputs. Disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS_RIGHT // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
#ifdef CONTROL_PWM_RIGHT
#define DEBUG_SERIAL_USART2 // left sensor cable debug
#else
#define DEBUG_SERIAL_USART3 // right sensor cable debug
#endif
#endif
// ############################# END OF VARIANT_PWM SETTINGS ############################
@ -412,29 +407,29 @@
/* CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL
* Connected to Left sensor board cable. Channel 1: steering, Channel 2: speed.
*/
#define CONTROL_IBUS // use IBUS as input
#define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used.
#define CONTROL_IBUS // use IBUS as input
#define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used.
#define IBUS_LENGTH 0x20
#define IBUS_COMMAND 0x40
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1000 // (0 - 1000)
#undef USART2_BAUD
#define USART2_BAUD 115200
#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
// #define DEBUG_SERIAL_USART3 // right sensor cable debug
#define USART2_BAUD 115200
#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
// #define DEBUG_SERIAL_USART3 // right sensor cable debug
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_MIN -1000 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 1000 // (0 - 1000)
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#endif
// ############################# END OF VARIANT_IBUS SETTINGS ############################
@ -446,19 +441,19 @@
#define CTRL_MOD_REQ TRQ_MODE // HOVERCAR works best in TORQUE Mode
#define CONTROL_ADC // use ADC as input. disable CONTROL_SERIAL_USART2, FEEDBACK_SERIAL_USART2, DEBUG_SERIAL_USART2!
#define ADC_PROTECT_TIMEOUT 100 // ADC Protection: number of wrong / missing input commands before safety state is taken
#define ADC_PROTECT_THRESH 300 // ADC Protection threshold below/above the MIN/MAX ADC values
#define ADC_PROTECT_THRESH 200 // ADC Protection threshold below/above the MIN/MAX ADC values
#define INPUT1_TYPE 1 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN 1000 // min ADC1-value while poti at minimum-position (0 - 4095)
#define INPUT1_MID 0
#define INPUT1_MAX 2500 // max ADC1-value while poti at maximum-position (0 - 4095)
#define INPUT1_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 1 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN 500 // min ADC2-value while poti at minimum-position (0 - 4095)
#define INPUT2_MID 0
#define INPUT2_MAX 2200 // max ADC2-value while poti at maximum-position (0 - 4095)
#define INPUT2_DEADBAND 0 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define SPEED_COEFFICIENT 16384 // 1.0f
#define STEER_COEFFICIENT 0 // 0.0f
@ -523,7 +518,7 @@
* Channel 1: steering, Channel 2: speed.
*/
#undef CTRL_MOD_REQ
#define CTRL_MOD_REQ TRQ_MODE // SKATEBOARD works best in TORQUE Mode
#define CTRL_MOD_REQ TRQ_MODE // SKATEBOARD works best in TORQUE Mode
//#define CONTROL_PWM_LEFT // use RC PWM as input on the LEFT cable. disable DEBUG_SERIAL_USART2!
#define CONTROL_PWM_RIGHT // use RC PWM as input on the RIGHT cable. disable DEBUG_SERIAL_USART3!
#ifdef CONTROL_PWM_RIGHT
@ -532,18 +527,18 @@
#define DEBUG_SERIAL_USART3 // right sensor cable debug
#endif
// Min / Max values of each channel (use DEBUG to determine these values)
#define INPUT1_TYPE 0 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_TYPE 0 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT1_MIN -1000 // (-1000 - 0)
#define INPUT1_MID 0
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_MAX 1000 // (0 - 1000)
#define INPUT1_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_MIN -800 // (-1000 - 0)
#define INPUT2_TYPE 2 // 0:Disabled 1:Normal POT 2:Middle Resting Pot
#define INPUT2_MIN -800 // (-1000 - 0)
#define INPUT2_MID 0
#define INPUT2_MAX 700 // (0 - 1000)
#define INPUT2_OUT_MIN -400 // (-1000 - 0) Change this value to adjust the braking amount
#define INPUT2_MAX 700 // (0 - 1000)
#define INPUT2_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define INPUT2_BRAKE -400 // (-1000 - 0) Change this value to adjust the braking amount
#define FILTER 6553 // 0.1f [-] fixdt(0,16,16) lower value == softer filter [0, 65535] = [0.0 - 1.0].
#define SPEED_COEFFICIENT 16384 // 1.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14
@ -711,16 +706,6 @@
// Functional checks
#if defined(ADC_PROTECT_ENA) && ((ADC1_MIN - ADC_PROTECT_THRESH) <= 0 || (ADC1_MAX + ADC_PROTECT_THRESH) >= 4095)
#warning ADC1 Protection NOT possible! Adjust the ADC thresholds.
#undef ADC_PROTECT_ENA
#endif
#if defined(ADC_PROTECT_ENA) && ((ADC2_MIN - ADC_PROTECT_THRESH) <= 0 || (ADC2_MAX + ADC_PROTECT_THRESH) >= 4095)
#warning ADC2 Protection NOT possible! Adjust the ADC thresholds.
#undef ADC_PROTECT_ENA
#endif
#if (defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)) && !defined(PPM_NUM_CHANNELS)
#error Total number of PPM channels needs to be set
#endif

View file

@ -66,11 +66,11 @@ void shortBeep(uint8_t freq);
void shortBeepMany(uint8_t cnt, int8_t dir);
void longBeep(uint8_t freq);
void calcAvgSpeed(void);
int addDeadBand(int16_t u, int16_t type, int16_t deadBand, int16_t in_min, int16_t in_mid, int16_t in_max, int16_t out_min, int16_t out_max);
int checkInputType(int16_t min, int16_t mid, int16_t max);
void adcCalibLim(void);
int checkInputType(int16_t min, int16_t mid, int16_t max);
void updateCurSpdLim(void);
void saveConfig(void);
int addDeadBand(int16_t u, int16_t type, int16_t deadBand, int16_t in_min, int16_t in_mid, int16_t in_max, int16_t out_min, int16_t out_max);
void standstillHold(void);
void electricBrake(uint16_t speedBlend, uint8_t reverseDir);
void cruiseControl(uint8_t button);
@ -79,9 +79,9 @@ void cruiseControl(uint8_t button);
void poweroff(void);
void poweroffPressCheck(void);
// Read Command Function
void readCommand(void);
// Read Functions
void readInput(void);
void readCommand(void);
void usart2_rx_check(void);
void usart3_rx_check(void);
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)

View file

@ -34,14 +34,13 @@ void PPM_ISR_Callback(void) {
if (rc_delay > 3000) {
if (ppm_valid && ppm_count == PPM_NUM_CHANNELS) {
ppm_timeout = 0;
timeoutCnt = 0; // added this
timeoutCnt = 0;
memcpy(ppm_captured_value, ppm_captured_value_buffer, sizeof(ppm_captured_value));
}
ppm_valid = true;
ppm_count = 0;
}
else if (ppm_count < PPM_NUM_CHANNELS && IN_RANGE(rc_delay, 900, 2100)){
//timeoutCnt = 0;
ppm_captured_value_buffer[ppm_count++] = CLAMP(rc_delay, 1000, 2000) - 1000;
} else {
ppm_valid = false;

View file

@ -210,6 +210,7 @@ int main(void) {
if (enable == 0 && (!rtY_Left.z_errCode && !rtY_Right.z_errCode) && (cmd1 > -50 && cmd1 < 50) && (cmd2 > -50 && cmd2 < 50)){
shortBeep(6); // make 2 beeps indicating the motor enable
shortBeep(4); HAL_Delay(100);
steerFixdt = speedFixdt = 0; // reset filters
enable = 1; // enable motors
consoleLog("-- Motors enabled --\r\n");
}

View file

@ -129,29 +129,29 @@ static int16_t INPUT_MIN; // [-] Input target minimum limitation
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
static uint8_t cur_spd_valid = 0;
static uint8_t input_cal_valid = 0;
static uint8_t cur_spd_valid = 0;
static uint8_t inp_cal_valid = 0;
static uint16_t INPUT1_TYP_CAL = INPUT1_TYPE;
static uint16_t INPUT1_MIN_CAL = INPUT1_MIN;
static uint16_t INPUT1_MID_CAL = INPUT1_MID;
static uint16_t INPUT1_MAX_CAL = INPUT1_MAX;
static uint16_t INPUT1_TYPE_CAL = INPUT1_TYPE;
static uint16_t INPUT2_TYP_CAL = INPUT2_TYPE;
static uint16_t INPUT2_MIN_CAL = INPUT2_MIN;
static uint16_t INPUT2_MID_CAL = INPUT2_MID;
static uint16_t INPUT2_MAX_CAL = INPUT2_MAX;
static uint16_t INPUT2_TYPE_CAL = INPUT2_TYPE;
#endif
#if defined(CONTROL_ADC)
static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection
static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_L_len = ARRAY_LEN(rx_buffer_L);
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint16_t timeoutCntSerial_L = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_L = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint16_t timeoutCntSerial_L = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_L = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
#if defined(SIDEBOARD_SERIAL_USART2)
SerialSideboard Sideboard_L;
@ -160,12 +160,12 @@ static uint32_t Sideboard_L_len = sizeof(Sideboard_L);
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_R_len = ARRAY_LEN(rx_buffer_R);
#endif
#if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint16_t timeoutCntSerial_R = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_R = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint16_t timeoutCntSerial_R = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_R = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
#if defined(SIDEBOARD_SERIAL_USART3)
SerialSideboard Sideboard_R;
@ -273,32 +273,30 @@ void Input_Init(void) {
#endif
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
uint16_t writeCheck, i_max, n_max;
HAL_FLASH_Unlock();
EE_Init(); /* EEPROM Init */
HAL_FLASH_Unlock();
EE_Init(); /* EEPROM Init */
EE_ReadVariable(VirtAddVarTab[0], &writeCheck);
if (writeCheck == FLASH_WRITE_KEY) {
EE_ReadVariable(VirtAddVarTab[1] , &INPUT1_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[2] , &INPUT1_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[3] , &INPUT1_MID_CAL);
EE_ReadVariable(VirtAddVarTab[4] , &INPUT2_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[5] , &INPUT2_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[6] , &INPUT2_MID_CAL);
EE_ReadVariable(VirtAddVarTab[7] , &i_max);
EE_ReadVariable(VirtAddVarTab[8] , &n_max);
EE_ReadVariable(VirtAddVarTab[9] , &INPUT1_TYPE_CAL);
EE_ReadVariable(VirtAddVarTab[10], &INPUT2_TYPE_CAL);
EE_ReadVariable(VirtAddVarTab[1] , &INPUT1_TYP_CAL);
EE_ReadVariable(VirtAddVarTab[2] , &INPUT1_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[3] , &INPUT1_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[4] , &INPUT1_MID_CAL);
EE_ReadVariable(VirtAddVarTab[5] , &INPUT2_TYP_CAL);
EE_ReadVariable(VirtAddVarTab[6] , &INPUT2_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[7] , &INPUT2_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[8] , &INPUT2_MID_CAL);
EE_ReadVariable(VirtAddVarTab[9] , &i_max);
EE_ReadVariable(VirtAddVarTab[10], &n_max);
rtP_Left.i_max = i_max;
rtP_Left.n_max = n_max;
rtP_Right.i_max = i_max;
rtP_Right.n_max = n_max;
}
HAL_FLASH_Lock();
#endif
#ifdef VARIANT_TRANSPOTTER
#ifdef VARIANT_TRANSPOTTER
enable = 1;
HAL_FLASH_Unlock();
@ -358,12 +356,9 @@ void Input_Init(void) {
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) || \
defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
void UART_DisableRxErrors(UART_HandleTypeDef *huart)
{
/* Disable PE (Parity Error) interrupts */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
/* Disable EIE (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
{
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); /* Disable PE (Parity Error) interrupts */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); /* Disable EIE (Frame error, noise error, overrun error) interrupts */
}
#endif
@ -421,6 +416,70 @@ void calcAvgSpeed(void) {
speedAvgAbs = abs(speedAvg);
}
/*
* Add Dead-band to a signal
* This function realizes a dead-band around 0 and scales the input between [out_min, out_max]
*/
int addDeadBand(int16_t u, int16_t type, int16_t deadBand, int16_t in_min, int16_t in_mid, int16_t in_max, int16_t out_min, int16_t out_max) {
switch (type){
case 0: // Input is ignored
return 0;
case 1: // Input is a normal pot
return CLAMP(MAP(u, in_min, in_max, 0, out_max), 0, out_max);
case 2: // Input is a mid resting pot
if( u > in_mid - deadBand && u < in_mid + deadBand ) {
return 0;
} else if(u > in_mid) {
return CLAMP(MAP(u, in_mid + deadBand, in_max, 0, out_max), 0, out_max);
} else {
return CLAMP(MAP(u, in_mid - deadBand, in_min, 0, out_min), out_min, 0);
}
default:
return 0;
}
}
/*
* Check Input Type
* This function identifies the input type: 0: Disabled, 1: Normal Pot, 2: Middle Resting Pot
*/
int checkInputType(int16_t min, int16_t mid, int16_t max){
int type = 0;
#ifdef CONTROL_ADC
int16_t threshold = 400; // Threshold to define if values are too close
#else
int16_t threshold = 200;
#endif
HAL_Delay(10);
if ((min / threshold) == (max / threshold)) {
consoleLog("Input is ignored"); // MIN and MAX are close, disable input
type = 0;
} else {
if ((min / threshold) == (mid / threshold)){
consoleLog("Input is a normal pot"); // MIN and MID are close, it's a normal pot
type = 1;
} else {
consoleLog("Input is a mid-resting pot"); // it's a mid resting pot
type = 2;
}
HAL_Delay(10);
#ifdef CONTROL_ADC
if ((min - ADC_PROTECT_THRESH) > 0 && (max + ADC_PROTECT_THRESH) < 4095) {
consoleLog(" and protected");
shortBeep(2); // Indicate protection by a beep
}
#endif
}
HAL_Delay(10);
consoleLog("\n");
HAL_Delay(10);
return type;
}
/*
* Auto-calibration of the ADC Limits
* This function finds the Minimum, Maximum, and Middle for the ADC input
@ -435,23 +494,20 @@ void adcCalibLim(void) {
return;
}
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
consoleLog("Input calibration started...\n");
readInput();
// Inititalization: MIN = a high values, MAX = a low value,
int32_t input1_fixdt = input1 << 16;
int32_t input2_fixdt = input2 << 16;
readInput();
// Inititalization: MIN = a high value, MAX = a low value
int32_t input1_fixdt = input1 << 16;
int32_t input2_fixdt = input2 << 16;
int16_t INPUT1_MIN_temp = MAX_int16_T;
int16_t INPUT1_MID_temp = 0;
int16_t INPUT1_MAX_temp = MIN_int16_T;
int16_t INPUT2_MIN_temp = MAX_int16_T;
int16_t INPUT2_MID_temp = 0;
int16_t INPUT2_MAX_temp = MIN_int16_T;
uint16_t input_cal_timeout = 0;
int16_t INPUT1_MIN_temp = INPUT1_MAX;
int16_t INPUT1_MID_temp = 0;
int16_t INPUT1_MAX_temp = INPUT1_MIN;
int16_t INPUT2_MIN_temp = INPUT2_MAX;
int16_t INPUT2_MID_temp = 0;
int16_t INPUT2_MAX_temp = INPUT2_MIN;
input_cal_valid = 1;
// Extract MIN, MAX and MID from ADC while the power button is not pressed
while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && input_cal_timeout++ < 4000) { // 20 sec timeout
@ -459,90 +515,48 @@ void adcCalibLim(void) {
filtLowPass32(input1, FILTER, &input1_fixdt);
filtLowPass32(input2, FILTER, &input2_fixdt);
INPUT1_MID_temp = (int16_t)(input1_fixdt >> 16);// CLAMP(input1_fixdt >> 16, INPUT1_MIN, INPUT1_MAX); // convert fixed-point to integer
INPUT1_MID_temp = (int16_t)(input1_fixdt >> 16);// CLAMP(input1_fixdt >> 16, INPUT1_MIN, INPUT1_MAX); // convert fixed-point to integer
INPUT2_MID_temp = (int16_t)(input2_fixdt >> 16);// CLAMP(input2_fixdt >> 16, INPUT2_MIN, INPUT2_MAX);
INPUT1_MIN_temp = MIN(INPUT1_MIN_temp, INPUT1_MID_temp);
INPUT1_MAX_temp = MAX(INPUT1_MAX_temp, INPUT1_MID_temp);
INPUT1_MAX_temp = MAX(INPUT1_MAX_temp, INPUT1_MID_temp);
INPUT2_MIN_temp = MIN(INPUT2_MIN_temp, INPUT2_MID_temp);
INPUT2_MAX_temp = MAX(INPUT2_MAX_temp, INPUT2_MID_temp);
HAL_Delay(5);
}
uint16_t input_margin = 0;
#ifdef CONTROL_ADC
input_margin = 100;
int16_t input_margin = 100;
#else
int16_t input_margin = 0;
#endif
INPUT1_MIN_CAL = INPUT1_MIN_temp + input_margin;
INPUT1_MID_CAL = INPUT1_MID_temp;
INPUT1_MAX_CAL = INPUT1_MAX_temp - input_margin;
INPUT1_TYPE_CAL = checkInputType(INPUT1_MIN_CAL,INPUT1_MID_CAL,INPUT1_MAX_CAL);
INPUT1_TYP_CAL = checkInputType(INPUT1_MIN_CAL, INPUT1_MID_CAL, INPUT1_MAX_CAL);
INPUT2_MIN_CAL = INPUT2_MIN_temp + input_margin;
INPUT2_MID_CAL = INPUT2_MID_temp;
INPUT2_MAX_CAL = INPUT2_MAX_temp - input_margin;
INPUT2_TYPE_CAL = checkInputType(INPUT2_MIN_CAL,INPUT2_MID_CAL,INPUT2_MAX_CAL);
INPUT2_TYP_CAL = checkInputType(INPUT2_MIN_CAL, INPUT2_MID_CAL, INPUT2_MAX_CAL);
inp_cal_valid = 1; // Mark calibration to be saved in Flash at shutdown
consoleLog("Saved limits\n");
HAL_Delay(10);
setScopeChannel(0, (int16_t)INPUT1_MIN_CAL);
setScopeChannel(1, (uint16_t)INPUT1_MID_CAL);
setScopeChannel(2, (int16_t)INPUT1_MAX_CAL);
setScopeChannel(3, (int16_t)0);
setScopeChannel(4, (int16_t)INPUT2_MIN_CAL);
setScopeChannel(5, (uint16_t)INPUT2_MID_CAL);
setScopeChannel(6, (int16_t)INPUT2_MAX_CAL);
setScopeChannel(7, (int16_t)0);
setScopeChannel(0, (int16_t)INPUT1_TYP_CAL);
setScopeChannel(1, (int16_t)INPUT1_MIN_CAL);
setScopeChannel(2, (int16_t)INPUT1_MID_CAL);
setScopeChannel(3, (int16_t)INPUT1_MAX_CAL);
setScopeChannel(4, (int16_t)INPUT2_TYP_CAL);
setScopeChannel(5, (int16_t)INPUT2_MIN_CAL);
setScopeChannel(6, (int16_t)INPUT2_MID_CAL);
setScopeChannel(7, (int16_t)INPUT2_MAX_CAL);
consoleScope();
HAL_Delay(20);
consoleLog("OK\n");
#endif
}
int checkInputType(int16_t min, int16_t mid, int16_t max){
HAL_Delay(10);
int type = 0;
// Threshold to define if values are too close
int16_t threshold = 200;
#ifdef CONTROL_ADC
threshold = 400;
#endif
if ( (min/threshold) == (max/threshold) ){
// MIN MID and MAX are close, disable input
consoleLog("Input is ignored");
type = 0;
} else {
if ( (min/threshold) == (mid/threshold) ){
// MIN and MID are close, it's a normal pot
consoleLog("Input is a normal pot");
type = 1;
}else {
// it's a mid resting pot
consoleLog("Input is a mid-resting pot");
type = 2;
}
HAL_Delay(10);
#ifdef CONTROL_ADC
if ( (min - ADC_PROTECT_THRESH) > 0 && (max + ADC_PROTECT_THRESH) < 4095){
consoleLog(" and protected");
}
#endif
}
HAL_Delay(10);
consoleLog("\n");
HAL_Delay(10);
return type;
}
/*
* Update Maximum Motor Current Limit (via ADC1) and Maximum Speed Limit (via ADC2)
* Procedure:
@ -556,14 +570,14 @@ void updateCurSpdLim(void) {
}
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
consoleLog("Torque and Speed limits update started...\n");
int32_t input1_fixdt = input1 << 16;
int32_t input2_fixdt = input2 << 16;
uint16_t cur_spd_timeout = 0;
int32_t input1_fixdt = input1 << 16;
int32_t input2_fixdt = input2 << 16;
uint16_t cur_factor; // fixdt(0,16,16)
uint16_t spd_factor; // fixdt(0,16,16)
uint16_t cur_spd_timeout = 0;
cur_spd_valid = 0;
// Wait for the power button press
while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && cur_spd_timeout++ < 2000) { // 10 sec timeout
@ -573,31 +587,31 @@ void updateCurSpdLim(void) {
HAL_Delay(5);
}
// Calculate scaling factors
cur_factor = CLAMP((input1_fixdt - ((int16_t)INPUT1_MIN_CAL << 16)) / ((int16_t)INPUT1_MAX_CAL - (int16_t)INPUT1_MIN_CAL), 6553, 65535); // ADC1, MIN_cur(10%) = 1.5 A
spd_factor = CLAMP((input2_fixdt - ((int16_t)INPUT2_MIN_CAL << 16)) / ((int16_t)INPUT2_MAX_CAL - (int16_t)INPUT2_MIN_CAL), 3276, 65535); // ADC2, MIN_spd(5%) = 50 rpm
cur_factor = CLAMP((input1_fixdt - ((int16_t)INPUT1_MIN_CAL << 16)) / ((int16_t)INPUT1_MAX_CAL - (int16_t)INPUT1_MIN_CAL), 6553, 65535); // ADC1, MIN_cur(10%) = 1.5 A
spd_factor = CLAMP((input2_fixdt - ((int16_t)INPUT2_MIN_CAL << 16)) / ((int16_t)INPUT2_MAX_CAL - (int16_t)INPUT2_MIN_CAL), 3276, 65535); // ADC2, MIN_spd(5%) = 50 rpm
if (INPUT1_TYPE_CAL != 0){
if (INPUT1_TYP_CAL != 0){
// Update current limit
rtP_Right.i_max = rtP_Left.i_max = (int16_t)((I_MOT_MAX * A2BIT_CONV * cur_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
cur_spd_valid = 1;
rtP_Left.i_max = rtP_Right.i_max = (int16_t)((I_MOT_MAX * A2BIT_CONV * cur_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
cur_spd_valid = 1; // Mark update to be saved in Flash at shutdown
}
if (INPUT2_TYPE_CAL != 0){
if (INPUT2_TYP_CAL != 0){
// Update speed limit
rtP_Right.n_max = rtP_Left.n_max = (int16_t)((N_MOT_MAX * spd_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
cur_spd_valid = 1;
rtP_Left.n_max = rtP_Right.n_max = (int16_t)((N_MOT_MAX * spd_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
cur_spd_valid += 2; // Mark update to be saved in Flash at shutdown
}
consoleLog("Saved limits\n");
HAL_Delay(10);
setScopeChannel(0, (int16_t)input1_fixdt);
setScopeChannel(1, (uint16_t)cur_factor);
setScopeChannel(2, (int16_t)rtP_Right.i_max);
setScopeChannel(3, (int16_t)0);
setScopeChannel(4, (int16_t)input2_fixdt);
setScopeChannel(5, (uint16_t)spd_factor);
setScopeChannel(6, (int16_t)rtP_Right.n_max);
setScopeChannel(7, (int16_t)0);
setScopeChannel(0, (int16_t)cur_spd_valid); // 0 = No limit changed, 1 = Current limit changed, 2 = Speed limit changed, 3 = Both limits changed
setScopeChannel(1, (int16_t)input1_fixdt);
setScopeChannel(2, (int16_t)cur_factor);
setScopeChannel(3, (int16_t)rtP_Left.i_max);
setScopeChannel(4, (int16_t)0);
setScopeChannel(5, (int16_t)input2_fixdt);
setScopeChannel(6, (int16_t)spd_factor);
setScopeChannel(7, (int16_t)rtP_Left.n_max);
consoleScope();
HAL_Delay(20);
consoleLog("OK\n");
@ -618,47 +632,24 @@ void saveConfig() {
}
#endif
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
if (input_cal_valid || cur_spd_valid) {
if (inp_cal_valid || cur_spd_valid) {
HAL_FLASH_Unlock();
EE_WriteVariable(VirtAddVarTab[0] , FLASH_WRITE_KEY);
EE_WriteVariable(VirtAddVarTab[1] , INPUT1_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[2] , INPUT1_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[3] , INPUT1_MID_CAL);
EE_WriteVariable(VirtAddVarTab[4] , INPUT2_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[5] , INPUT2_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[6] , INPUT2_MID_CAL);
EE_WriteVariable(VirtAddVarTab[7] , rtP_Left.i_max);
EE_WriteVariable(VirtAddVarTab[8] , rtP_Left.n_max);
EE_WriteVariable(VirtAddVarTab[9] , INPUT1_TYPE_CAL);
EE_WriteVariable(VirtAddVarTab[10], INPUT2_TYPE_CAL);
EE_WriteVariable(VirtAddVarTab[1] , INPUT1_TYP_CAL);
EE_WriteVariable(VirtAddVarTab[2] , INPUT1_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[3] , INPUT1_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[4] , INPUT1_MID_CAL);
EE_WriteVariable(VirtAddVarTab[5] , INPUT2_TYP_CAL);
EE_WriteVariable(VirtAddVarTab[6] , INPUT2_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[7] , INPUT2_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[8] , INPUT2_MID_CAL);
EE_WriteVariable(VirtAddVarTab[9] , rtP_Left.i_max);
EE_WriteVariable(VirtAddVarTab[10], rtP_Left.n_max);
HAL_FLASH_Lock();
}
#endif
}
/*
* Add Dead-band to a signal
* This function realizes a dead-band around 0 and scales the input between [out_min, out_max]
*/
int addDeadBand(int16_t u, int16_t type, int16_t deadBand, int16_t in_min, int16_t in_mid, int16_t in_max, int16_t out_min, int16_t out_max) {
switch (type){
case 0: // Input is ignored
return 0;
case 1: // Input is a normal pot
return CLAMP(MAP( u , in_min, in_max, 0, out_max ), 0, out_max);
case 2: // Input is a mid resting pot
if( u > in_mid - deadBand && u < in_mid + deadBand ) {
return 0;
} else if(u > in_mid) {
return CLAMP( MAP(u, in_mid + deadBand, in_max, 0, out_max), 0 , out_max);
} else {
return CLAMP( MAP(u, in_mid - deadBand, in_min, 0, out_min), out_min, 0);
}
default:
return 0;
}
}
/*
* Standstill Hold Function
* This function uses Cruise Control to provide an anti-roll functionality at standstill.
@ -824,13 +815,18 @@ void poweroffPressCheck(void) {
#endif
}
/* =========================== Read Functions =========================== */
/*
* Function to read the raw Input values from various input devices
*/
void readInput(void) {
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
if (nunchuk_connected != 0) {
Nunchuk_Read();
input1 = (nunchuk_data[0] - 127) * 8; // X axis 0-255
input2 = (nunchuk_data[1] - 128) * 8; // Y axis 0-255
input1 = (nunchuk_data[0] - 127) * 8; // X axis 0-255
input2 = (nunchuk_data[1] - 128) * 8; // Y axis 0-255
#ifdef SUPPORT_BUTTONS
button1 = (uint8_t)nunchuk_data[5] & 1;
button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1;
@ -842,8 +838,8 @@ void readInput(void) {
input1 = (ppm_captured_value[0] - 500) * 2;
input2 = (ppm_captured_value[1] - 500) * 2;
#ifdef SUPPORT_BUTTONS
button1 = ppm_captured_value[5] > 500;
button2 = 0;
button1 = ppm_captured_value[5] > 500;
button2 = 0;
#endif
#endif
@ -854,8 +850,9 @@ void readInput(void) {
#ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
input1 = adc_buffer.l_tx2;
input2 = adc_buffer.l_rx2;
input1 = adc_buffer.l_tx2;
input2 = adc_buffer.l_rx2;
timeoutCnt = 0;
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
@ -866,38 +863,37 @@ void readInput(void) {
}
input1 = (ibus_captured_value[0] - 500) * 2;
input2 = (ibus_captured_value[1] - 500) * 2;
#else
if (IN_RANGE(command.steer, INPUT_MIN, INPUT_MAX) && IN_RANGE(command.speed, INPUT_MIN, INPUT_MAX)) {
#else
input1 = command.steer;
input2 = command.speed;
}
#endif
timeoutCnt = 0;
#endif
#endif
}
/* =========================== Read Command Function =========================== */
/*
* Function to calculate the command to the motors. This function also manages:
* - timeout detection
* - MIN/MAX limitations and deadband
*/
void readCommand(void) {
readInput();
#ifdef CONTROL_ADC
// If input1 or Input2 is either below MIN - Threshold or above MAX + Threshold, ADC protection timeout
if ((IN_RANGE(input1,(int16_t)INPUT1_MIN_CAL - ADC_PROTECT_THRESH,(int16_t)INPUT1_MAX_CAL + ADC_PROTECT_THRESH)) &&
(IN_RANGE(input2,(int16_t)INPUT2_MIN_CAL - ADC_PROTECT_THRESH,(int16_t)INPUT2_MAX_CAL + ADC_PROTECT_THRESH))){
if (timeoutFlagADC) { // Check for previous timeout flag
if (timeoutCntADC-- <= 0) // Timeout de-qualification
timeoutFlagADC = 0; // Timeout flag cleared
if (IN_RANGE(input1, (int16_t)INPUT1_MIN_CAL - ADC_PROTECT_THRESH, (int16_t)INPUT1_MAX_CAL + ADC_PROTECT_THRESH) &&
IN_RANGE(input2, (int16_t)INPUT2_MIN_CAL - ADC_PROTECT_THRESH, (int16_t)INPUT2_MAX_CAL + ADC_PROTECT_THRESH)){
if (timeoutFlagADC) { // Check for previous timeout flag
if (timeoutCntADC-- <= 0) // Timeout de-qualification
timeoutFlagADC = 0; // Timeout flag cleared
} else {
timeoutCntADC = 0; // Reset the timeout counter
timeoutCntADC = 0; // Reset the timeout counter
}
} else {
if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification
timeoutFlagADC = 1; // Timeout detected
timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value
if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification
timeoutFlagADC = 1; // Timeout detected
timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value
}
}
timeoutCnt = 0;
}
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
@ -919,23 +915,13 @@ void readCommand(void) {
#endif
#if !defined(VARIANT_HOVERBOARD) && !defined(VARIANT_TRANSPOTTER)
cmd1 = addDeadBand(input1, INPUT1_TYPE_CAL, INPUT1_DEADBAND, INPUT1_MIN_CAL, INPUT1_MID_CAL, INPUT1_MAX_CAL, INPUT_MIN, INPUT_MAX);
cmd1 = addDeadBand(input1, INPUT1_TYP_CAL, INPUT1_DEADBAND, INPUT1_MIN_CAL, INPUT1_MID_CAL, INPUT1_MAX_CAL, INPUT_MIN, INPUT_MAX);
#if !defined(VARIANT_SKATEBOARD)
cmd2 = addDeadBand(input2, INPUT2_TYPE_CAL, INPUT2_DEADBAND, INPUT2_MIN_CAL, INPUT2_MID_CAL, INPUT2_MAX_CAL, INPUT_MIN, INPUT_MAX);
cmd2 = addDeadBand(input2, INPUT2_TYP_CAL, INPUT2_DEADBAND, INPUT2_MIN_CAL, INPUT2_MID_CAL, INPUT2_MAX_CAL, INPUT_MIN, INPUT_MAX);
#else
cmd2 = addDeadBand(input2, INPUT2_TYPE_CAL, INPUT2_DEADBAND, INPUT2_MIN_CAL, INPUT2_MID_CAL, INPUT2_MAX_CAL, INPUT2_OUT_MIN, INPUT_MAX);
cmd2 = addDeadBand(input2, INPUT2_TYP_CAL, INPUT2_DEADBAND, INPUT2_MIN_CAL, INPUT2_MID_CAL, INPUT2_MAX_CAL, INPUT2_BRAKE, INPUT_MAX);
#endif
#endif
#ifdef VARIANT_HOVERCAR
brakePressed = (uint8_t)(cmd1 > 50);
#endif
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
#ifdef VARIANT_TRANSPOTTER
#ifdef GAMETRAK_CONNECTION_NORMAL
@ -948,6 +934,10 @@ void readCommand(void) {
#endif
#endif
#ifdef VARIANT_HOVERCAR
brakePressed = (uint8_t)(cmd1 > 50);
#endif
if (timeoutFlagADC || timeoutFlagSerial || timeoutCnt > TIMEOUT) { // In case of timeout bring the system to a Safe State
ctrlModReq = OPEN_MODE; // Request OPEN_MODE. This will bring the motor power to 0 in a controlled way
cmd1 = 0;
@ -956,6 +946,11 @@ void readCommand(void) {
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
}
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
#if defined(CRUISE_CONTROL_SUPPORT) && (defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT))
cruiseControl(button1); // Cruise control activation/deactivation
#endif
@ -975,17 +970,17 @@ void usart2_rx_check(void)
#endif
#if defined(DEBUG_SERIAL_USART2)
if (pos != old_pos) { // Check change in received data
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_L[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data
usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART2
#endif // DEBUG_SERIAL_USART2
#ifdef CONTROL_SERIAL_USART2
uint8_t *ptr;
@ -997,7 +992,7 @@ void usart2_rx_check(void)
} else if ((rx_buffer_L_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw
ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 2); // Process data
@ -1005,7 +1000,7 @@ void usart2_rx_check(void)
}
#endif // CONTROL_SERIAL_USART2
#ifdef SIDEBOARD_SERIAL_USART2
#ifdef SIDEBOARD_SERIAL_USART2
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&Sideboard_L_raw; // Initialize the pointer with Sideboard_raw address
@ -1015,7 +1010,7 @@ void usart2_rx_check(void)
} else if ((rx_buffer_L_len - old_pos + pos) == Sideboard_L_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_L_len - old_pos; // Move to correct position in Sideboard_raw
ptr += rx_buffer_L_len - old_pos; // Move to correct position in Sideboard_raw
memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data
}
usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data
@ -1045,17 +1040,17 @@ void usart3_rx_check(void)
#endif
#if defined(DEBUG_SERIAL_USART3)
if (pos != old_pos) { // Check change in received data
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_R[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data
usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART3
#endif // DEBUG_SERIAL_USART3
#ifdef CONTROL_SERIAL_USART3
uint8_t *ptr;
@ -1067,7 +1062,7 @@ void usart3_rx_check(void)
} else if ((rx_buffer_R_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw
ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 3); // Process data
@ -1075,7 +1070,7 @@ void usart3_rx_check(void)
}
#endif // CONTROL_SERIAL_USART3
#ifdef SIDEBOARD_SERIAL_USART3
#ifdef SIDEBOARD_SERIAL_USART3
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&Sideboard_R_raw; // Initialize the pointer with Sideboard_raw address
@ -1085,7 +1080,7 @@ void usart3_rx_check(void)
} else if ((rx_buffer_R_len - old_pos + pos) == Sideboard_R_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_R_len - old_pos; // Move to correct position in Sideboard_raw
ptr += rx_buffer_R_len - old_pos; // Move to correct position in Sideboard_raw
memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data
}
usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data
@ -1098,7 +1093,7 @@ void usart3_rx_check(void)
if (old_pos == rx_buffer_R_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif
#endif
}
/*
@ -1107,11 +1102,11 @@ void usart3_rx_check(void)
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
//consoleLog("-- Command received --\r\n");
// handle_input(*userCommand); // -> Create this function to handle the user commands
}
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
consoleLog("-- Command received --\r\n");
// handle_input(*userCommand); // -> Create this function to handle the user commands
}
}
}
#endif // SERIAL_DEBUG
@ -1146,10 +1141,10 @@ void usart_process_command(SerialCommand *command_in, SerialCommand *command_out
}
#else
uint16_t checksum;
if (command_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed);
if (command_in->checksum == checksum) {
*command_out = *command_in;
if (command_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed);
if (command_in->checksum == checksum) {
*command_out = *command_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
@ -1173,12 +1168,12 @@ void usart_process_command(SerialCommand *command_in, SerialCommand *command_out
*/
#if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)
void usart_process_sideboard(SerialSideboard *Sideboard_in, SerialSideboard *Sideboard_out, uint8_t usart_idx)
{
{
uint16_t checksum;
if (Sideboard_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Sideboard_in->start ^ Sideboard_in->roll ^ Sideboard_in->pitch ^ Sideboard_in->yaw ^ Sideboard_in->sensors);
if (Sideboard_in->checksum == checksum) {
*Sideboard_out = *Sideboard_in;
if (Sideboard_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Sideboard_in->start ^ Sideboard_in->roll ^ Sideboard_in->pitch ^ Sideboard_in->yaw ^ Sideboard_in->sensors);
if (Sideboard_in->checksum == checksum) {
*Sideboard_out = *Sideboard_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef SIDEBOARD_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
@ -1191,7 +1186,7 @@ void usart_process_sideboard(SerialSideboard *Sideboard_in, SerialSideboard *Sid
#endif
}
}
}
}
}
#endif