#include /* Connections: Tennsy Pin, Pin Name, Connected to 10, Tx2, Hoverboard RX(Green) 9, Rx2, Hoverboard TX(Blue) 8, Tx3, Hoverboard RX(Green) 7, Rx3, Hoverboard TX(Blue) */ // ########################## DEFINES ########################## #define SERIAL_CONTROL_BAUD 115200 // [-] Baud rate for HoverSerial (used to communicate with the hoverboard) #define SERIAL_BAUD 115200 // [-] Baud rate for built-in Serial (used for the Serial Monitor) #define START_FRAME 0xABCD // [-] Start frme definition for reliable serial communication #define SENDPERIOD 50 //ms. delay for sending speed and steer data to motor controller via serial #define RECEIVEPERIOD 50 //ms #define PIN_THROTTLE A7 const uint16_t calib_throttle_min = 400; //better a bit too high than too low const uint16_t calib_throttle_max = 790; #define PIN_BRAKE A8 const uint16_t calib_brake_min = 100;//better a bit too high than too low const uint16_t calib_brake_max = 600; int16_t throttle_pos=0; int16_t brake_pos=0; unsigned long last_adcread=0; #define ADCREADPERIOD 100 #define PIN_START A9 #define PIN_LED_START 2 //Enginge start led #define PIN_LATCH_ENABLE A6 #define PIN_MODE_SWITCH 3 #define PIN_MODE_LEDG 4 #define PIN_MODE_LEDR 5 unsigned long last_send = 0; unsigned long last_receive = 0; float avg_currentL=0; float avg_currentR=0; int16_t cmd_send=0; // Global variables for serial communication typedef struct{ uint8_t idx = 0; // Index for new data pointer uint16_t bufStartFrame; // Buffer Start Frame byte *p; // Pointer declaration for the new received data byte incomingByte; byte incomingBytePrev; long lastValidDataSerial_time; } SerialRead; SerialRead SerialcomFront; typedef struct{ uint16_t start; int16_t speedLeft; int16_t speedRight; uint16_t checksum; } SerialCommand; SerialCommand CommandFront; typedef struct{ uint16_t start; int16_t cmd1; int16_t cmd2; int16_t speedL_meas; int16_t speedR_meas; int16_t batVoltage; int16_t boardTemp; int16_t curL_DC; //negative values are current drawn. positive values mean generated current int16_t curR_DC; uint16_t cmdLed; uint16_t checksum; } SerialFeedback; SerialFeedback FeedbackFront; SerialFeedback NewFeedbackFront; #define CURRENT_FILTER_SIZE 100 //latency is about CURRENT_FILTER_SIZE/2*MEASURE_INTERVAL (measure interval is defined by hoverboard controller) #define CURRENT_MEANVALUECOUNT 10 //0<= meanvaluecount < CURRENT_FILTER_SIZE/2. how many values will be used from sorted weight array from the center region. abour double this values reading are used typedef struct{ int16_t curL_DC[CURRENT_FILTER_SIZE] = {0}; int16_t curR_DC[CURRENT_FILTER_SIZE] = {0}; uint8_t cur_pos=0; int16_t cmdL=0; int16_t cmdR=0; } MotorParameter; MotorParameter motorparamsFront; void SendSerial(SerialCommand &scom, int16_t uSpeedLeft, int16_t uSpeedRight, HardwareSerial &SerialRef); bool ReceiveSerial(SerialRead &sread, SerialFeedback &Feedback,SerialFeedback &NewFeedback, HardwareSerial &SerialRef); int sort_desc(const void *cmp1, const void *cmp2); float filterMedian(int16_t* values); void SendSerial(SerialCommand &scom, int16_t uSpeedLeft, int16_t uSpeedRight, HardwareSerial &SerialRef) { // Create command scom.start = (uint16_t)START_FRAME; scom.speedLeft = (int16_t)uSpeedLeft; scom.speedRight = (int16_t)uSpeedRight; scom.checksum = (uint16_t)(scom.start ^ scom.speedLeft ^ scom.speedRight); SerialRef.write((uint8_t *) &scom, sizeof(scom)); } bool ReceiveSerial(SerialRead &sread, SerialFeedback &Feedback,SerialFeedback &NewFeedback, HardwareSerial &SerialRef) { bool _result=1; // Check for new data availability in the Serial buffer if ( SerialRef.available() ) { sread.incomingByte = SerialRef.read(); // Read the incoming byte sread.bufStartFrame = ((uint16_t)(sread.incomingByte) << 8) | sread.incomingBytePrev; // Construct the start frame } else { return 0; } // If DEBUG_RX is defined print all incoming bytes #ifdef DEBUG_RX Serial.print(sread.incomingByte); #endif // Copy received data if (sread.bufStartFrame == START_FRAME) { // Initialize if new data is detected sread.p = (byte *)&NewFeedback; *sread.p++ = sread.incomingBytePrev; *sread.p++ = sread.incomingByte; sread.idx = 2; } else if (sread.idx >= 2 && sread.idx < sizeof(SerialFeedback)) { // Save the new received data *sread.p++ = sread.incomingByte; sread.idx++; } // Check if we reached the end of the package if (sread.idx == sizeof(SerialFeedback)) { uint16_t checksum; checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas ^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.curL_DC ^ NewFeedback.curR_DC ^ NewFeedback.cmdLed); // Check validity of the new data if (NewFeedback.start == START_FRAME && checksum == NewFeedback.checksum) { // Copy the new data memcpy(&Feedback, &NewFeedback, sizeof(SerialFeedback)); sread.lastValidDataSerial_time = millis(); } else { _result=0; } sread.idx = 0; // Reset the index (it prevents to enter in this if condition in the next cycle) } /* // Print data to built-in Serial Serial.print("1: "); Serial.print(Feedback.cmd1); Serial.print(" 2: "); Serial.print(Feedback.cmd2); Serial.print(" 3: "); Serial.print(Feedback.speedR); Serial.print(" 4: "); Serial.print(Feedback.speedL); Serial.print(" 5: "); Serial.print(Feedback.speedR_meas); Serial.print(" 6: "); Serial.print(Feedback.speedL_meas); Serial.print(" 7: "); Serial.print(Feedback.batVoltage); Serial.print(" 8: "); Serial.println(Feedback.boardTemp); } else { Serial.println("Non-valid data skipped"); }*/ // Update previous states sread.incomingBytePrev = sread.incomingByte; return _result; //new data was available } // ########################## SETUP ########################## void setup() { Serial.begin(SERIAL_BAUD); //Debug and Program. A9=TX1, A10=RX1 (3v3 level) Serial2.begin(SERIAL_CONTROL_BAUD); //control Serial3.begin(SERIAL_CONTROL_BAUD); //control pinMode(PIN_THROTTLE, INPUT); pinMode(PIN_BRAKE, INPUT); pinMode(PIN_START, INPUT_PULLUP); pinMode(PIN_LED_START, OUTPUT); digitalWrite(PIN_LED_START,HIGH); pinMode(PIN_MODE_LEDG, OUTPUT); digitalWrite(PIN_MODE_LEDG,LOW); pinMode(PIN_MODE_LEDR, OUTPUT); digitalWrite(PIN_MODE_LEDR,LOW); pinMode(PIN_LATCH_ENABLE, OUTPUT); digitalWrite(PIN_LATCH_ENABLE,HIGH); //latch on pinMode(PIN_MODE_SWITCH, INPUT_PULLUP); } unsigned long loopmillis; // ########################## LOOP ########################## void loop() { loopmillis=millis(); //read millis for this cycle bool newData2=ReceiveSerial(SerialcomFront,FeedbackFront, NewFeedbackFront, Serial2); if (loopmillis - last_adcread > ADCREADPERIOD) { //read teensy adc and filter last_adcread=loopmillis; uint16_t throttle_raw = analogRead(PIN_THROTTLE); throttle_pos=max(0,min(1000,map(throttle_raw,calib_throttle_min,calib_throttle_max,0,1000))); //map and constrain uint16_t brake_raw = analogRead(PIN_BRAKE); brake_pos=max(0,min(1000,map(brake_raw,calib_brake_min,calib_brake_max,0,1000))); //map and constrain //Serial.print(throttle_raw); Serial.print(", "); Serial.print(brake_raw); Serial.print(", "); //Serial.print(throttle_pos); Serial.print(", "); Serial.print(brake_pos); Serial.println(); if (digitalRead(PIN_MODE_SWITCH)) { //pushed in, also high if cable got disconnected throttle_pos/=2; digitalWrite(PIN_MODE_LEDG,HIGH); //Green digitalWrite(PIN_MODE_LEDR,LOW); }else{ //button not pushed in digitalWrite(PIN_MODE_LEDG,LOW); digitalWrite(PIN_MODE_LEDR,HIGH); //Red } } if (newData2) { motorparamsFront.cur_pos++; motorparamsFront.cur_pos%=CURRENT_FILTER_SIZE; motorparamsFront.curL_DC[motorparamsFront.cur_pos] = FeedbackFront.curL_DC; motorparamsFront.curR_DC[motorparamsFront.cur_pos] = FeedbackFront.curR_DC; } if (loopmillis - last_send > SENDPERIOD) { //Calculate motor stuff and send to motor controllers last_send=loopmillis; int16_t cmdreduce_constant=map(brake_pos,0,1000,0,10); //reduce cmd value every cycle #define MAXBREAKCURRENT 10 float brakepedal_current_multiplier=MAXBREAKCURRENT/1000.0; //how much breaking (in Ampere) for unit of brake_pos (0<=brake_pos<=1000) float freewheel_current=0.1-brake_pos*brakepedal_current_multiplier; //above which driving current cmd send will be reduced more. increase value to decrease breaking. values <0 increases breaking above freewheeling float freewheel_break_factor=1000.0; //speed cmd units per amp per second. 1A over freewheel_current decreases cmd speed by this amount (in average) float filtered_curFL=filterMedian(motorparamsFront.curL_DC)/50.0; //in Amps float filtered_curFR=filterMedian(motorparamsFront.curR_DC)/50.0; //in Amps float filtered_currentAll=min(filtered_curFL,filtered_curFR); if (throttle_pos>=motorparamsFront.cmdR) { //accelerating cmd_send = throttle_pos; //if throttle higher than apply throttle directly }else{ //freewheeling or braking if (-filtered_currentAll>freewheel_current) { //drive current too high cmd_send-= max(0, (-filtered_currentAll-freewheel_current)*freewheel_break_factor*(SENDPERIOD/1000.0)); //how much current over freewheel current, multiplied by factor. reduces cmd_send value } cmd_send-=max(1,cmdreduce_constant); //reduce slowly anyways cmd_send=constrain(cmd_send,0,1000); } //apply throttle command to all motors motorparamsFront.cmdL=cmd_send; motorparamsFront.cmdR=cmd_send; SendSerial(CommandFront,motorparamsFront.cmdL,motorparamsFront.cmdR,Serial2); Serial.print(cmd_send); Serial.print(", "); Serial.print(throttle_pos); Serial.print(", "); Serial.print(filtered_curFL*1000); Serial.print(", "); Serial.print(filtered_curFR*1000); Serial.print(", "); Serial.print(filtered_currentAll*1000); Serial.println(); } } int sort_desc(const void *cmp1, const void *cmp2) //compare function for qsort { float a = *((float *)cmp1); float b = *((float *)cmp2); return a > b ? -1 : (a < b ? 1 : 0); } float filterMedian(int16_t* values) { float copied_values[CURRENT_FILTER_SIZE]; for(int i=0;i