410 lines
17 KiB
Text
410 lines
17 KiB
Text
// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept
|
|
// for desktop computers and home theater PCs. This is the host PC-side code
|
|
// written in Processing, intended for use with a USB-connected Arduino
|
|
// microcontroller running the accompanying LED streaming code. Requires one
|
|
// or more strands of Digital RGB LED Pixels (Adafruit product ID #322,
|
|
// specifically the newer WS2801-based type, strand of 25) and a 5 Volt power
|
|
// supply (such as Adafruit #276). You may need to adapt the code and the
|
|
// hardware arrangement for your specific display configuration.
|
|
// Screen capture adapted from code by Cedrik Kiefer (processing.org forum)
|
|
|
|
import java.awt.*;
|
|
import java.awt.image.*;
|
|
import processing.serial.*;
|
|
|
|
// CONFIGURABLE PROGRAM CONSTANTS --------------------------------------------
|
|
|
|
// Minimum LED brightness; some users prefer a small amount of backlighting
|
|
// at all times, regardless of screen content. Higher values are brighter,
|
|
// or set to 0 to disable this feature.
|
|
|
|
static final short minBrightness = 120;
|
|
|
|
// LED transition speed; it's sometimes distracting if LEDs instantaneously
|
|
// track screen contents (such as during bright flashing sequences), so this
|
|
// feature enables a gradual fade to each new LED state. Higher numbers yield
|
|
// slower transitions (max of 255), or set to 0 to disable this feature
|
|
// (immediate transition of all LEDs).
|
|
|
|
static final short fade = 75;
|
|
|
|
// Pixel size for the live preview image.
|
|
|
|
static final int pixelSize = 20;
|
|
|
|
// Depending on many factors, it may be faster either to capture full
|
|
// screens and process only the pixels needed, or to capture multiple
|
|
// smaller sub-blocks bounding each region to be processed. Try both,
|
|
// look at the reported frame rates in the Processing output console,
|
|
// and run with whichever works best for you.
|
|
|
|
static final boolean useFullScreenCaps = true;
|
|
|
|
// Serial device timeout (in milliseconds), for locating Arduino device
|
|
// running the corresponding LEDstream code. See notes later in the code...
|
|
// in some situations you may want to entirely comment out that block.
|
|
|
|
static final int timeout = 5000; // 5 seconds
|
|
|
|
// PER-DISPLAY INFORMATION ---------------------------------------------------
|
|
|
|
// This array contains details for each display that the software will
|
|
// process. If you have screen(s) attached that are not among those being
|
|
// "Adalighted," they should not be in this list. Each triplet in this
|
|
// array represents one display. The first number is the system screen
|
|
// number...typically the "primary" display on most systems is identified
|
|
// as screen #1, but since arrays are indexed from zero, use 0 to indicate
|
|
// the first screen, 1 to indicate the second screen, and so forth. This
|
|
// is the ONLY place system screen numbers are used...ANY subsequent
|
|
// references to displays are an index into this list, NOT necessarily the
|
|
// same as the system screen number. For example, if you have a three-
|
|
// screen setup and are illuminating only the third display, use '2' for
|
|
// the screen number here...and then, in subsequent section, '0' will be
|
|
// used to refer to the first/only display in this list.
|
|
// The second and third numbers of each triplet represent the width and
|
|
// height of a grid of LED pixels attached to the perimeter of this display.
|
|
// For example, '9,6' = 9 LEDs across, 6 LEDs down.
|
|
|
|
static final int displays[][] = new int[][] {
|
|
{0,9,6} // Screen 0, 9 LEDs across, 6 LEDs down
|
|
//,{1,9,6} // Screen 1, also 9 LEDs across and 6 LEDs down
|
|
};
|
|
|
|
// PER-LED INFORMATION -------------------------------------------------------
|
|
|
|
// This array contains the 2D coordinates corresponding to each pixel in the
|
|
// LED strand, in the order that they're connected (i.e. the first element
|
|
// here belongs to the first LED in the strand, second element is the second
|
|
// LED, and so forth). Each triplet in this array consists of a display
|
|
// number (an index into the display array above, NOT necessarily the same as
|
|
// the system screen number) and an X and Y coordinate specified in the grid
|
|
// units given for that display. {0,0,0} is the top-left corner of the first
|
|
// display in the array.
|
|
// For our example purposes, the coordinate list below forms a ring around
|
|
// the perimeter of a single screen, with a one pixel gap at the bottom to
|
|
// accommodate a monitor stand. Modify this to match your own setup:
|
|
|
|
static final int leds[][] = new int[][] {
|
|
{0,3,5}, {0,2,5}, {0,1,5}, {0,0,5}, // Bottom edge, left half
|
|
{0,0,4}, {0,0,3}, {0,0,2}, {0,0,1}, // Left edge
|
|
{0,0,0}, {0,1,0}, {0,2,0}, {0,3,0}, {0,4,0}, // Top edge
|
|
{0,5,0}, {0,6,0}, {0,7,0}, {0,8,0}, // More top edge
|
|
{0,8,1}, {0,8,2}, {0,8,3}, {0,8,4}, // Right edge
|
|
{0,8,5}, {0,7,5}, {0,6,5}, {0,5,5} // Bottom edge, right half
|
|
|
|
/* Hypothetical second display has the same arrangement as the first.
|
|
But you might not want both displays completely ringed with LEDs;
|
|
the screens might be positioned where they share an edge in common.
|
|
,{1,3,5}, {1,2,5}, {1,1,5}, {1,0,5}, // Bottom edge, left half
|
|
{1,0,4}, {1,0,3}, {1,0,2}, {1,0,1}, // Left edge
|
|
{1,0,0}, {1,1,0}, {1,2,0}, {1,3,0}, {1,4,0}, // Top edge
|
|
{1,5,0}, {1,6,0}, {1,7,0}, {1,8,0}, // More top edge
|
|
{1,8,1}, {1,8,2}, {1,8,3}, {1,8,4}, // Right edge
|
|
{1,8,5}, {1,7,5}, {1,6,5}, {1,5,5} // Bottom edge, right half
|
|
*/
|
|
};
|
|
|
|
// GLOBAL VARIABLES ---- You probably won't need to modify any of this -------
|
|
|
|
byte[] serialData = new byte[6 + leds.length * 3];
|
|
short[][] ledColor = new short[leds.length][3],
|
|
prevColor = new short[leds.length][3];
|
|
byte[][] gamma = new byte[256][3];
|
|
int nDisplays = displays.length;
|
|
Robot[] bot = new Robot[displays.length];
|
|
Rectangle[] dispBounds = new Rectangle[displays.length],
|
|
ledBounds; // Alloc'd only if per-LED captures
|
|
int[][] pixelOffset = new int[leds.length][256],
|
|
screenData; // Alloc'd only if full-screen captures
|
|
PImage[] preview = new PImage[displays.length];
|
|
Serial port;
|
|
DisposeHandler dh; // For disabling LEDs on exit
|
|
|
|
// INITIALIZATION ------------------------------------------------------------
|
|
|
|
void setup() {
|
|
GraphicsEnvironment ge;
|
|
GraphicsConfiguration[] gc;
|
|
GraphicsDevice[] gd;
|
|
int d, i, totalWidth, maxHeight, row, col, rowOffset;
|
|
int[] x = new int[16], y = new int[16];
|
|
float f, range, step, start;
|
|
|
|
dh = new DisposeHandler(this); // Init DisposeHandler ASAP
|
|
|
|
// Open serial port. As written here, this assumes the Arduino is the
|
|
// first/only serial device on the system. If that's not the case,
|
|
// change "Serial.list()[0]" to the name of the port to be used:
|
|
port = new Serial(this, Serial.list()[0], 115200);
|
|
// Alternately, in certain situations the following line can be used
|
|
// to detect the Arduino automatically. But this works ONLY with SOME
|
|
// Arduino boards and versions of Processing! This is so convoluted
|
|
// to explain, it's easier just to test it yourself and see whether
|
|
// it works...if not, leave it commented out and use the prior port-
|
|
// opening technique.
|
|
// port = openPort();
|
|
// And finally, to test the software alone without an Arduino connected,
|
|
// don't open a port...just comment out the serial lines above.
|
|
|
|
// Initialize screen capture code for each display's dimensions.
|
|
dispBounds = new Rectangle[displays.length];
|
|
if(useFullScreenCaps == true) {
|
|
screenData = new int[displays.length][];
|
|
// ledBounds[] not used
|
|
} else {
|
|
ledBounds = new Rectangle[leds.length];
|
|
// screenData[][] not used
|
|
}
|
|
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
|
|
gd = ge.getScreenDevices();
|
|
if(nDisplays > gd.length) nDisplays = gd.length;
|
|
totalWidth = maxHeight = 0;
|
|
for(d=0; d<nDisplays; d++) { // For each display...
|
|
try {
|
|
bot[d] = new Robot(gd[displays[d][0]]);
|
|
}
|
|
catch(AWTException e) {
|
|
System.out.println("new Robot() failed");
|
|
continue;
|
|
}
|
|
gc = gd[displays[d][0]].getConfigurations();
|
|
dispBounds[d] = gc[0].getBounds();
|
|
dispBounds[d].x = dispBounds[d].y = 0;
|
|
preview[d] = createImage(displays[d][1], displays[d][2], RGB);
|
|
preview[d].loadPixels();
|
|
totalWidth += displays[d][1];
|
|
if(d > 0) totalWidth++;
|
|
if(displays[d][2] > maxHeight) maxHeight = displays[d][2];
|
|
}
|
|
|
|
// Precompute locations of every pixel to read when downsampling.
|
|
// Saves a bunch of math on each frame, at the expense of a chunk
|
|
// of RAM. Number of samples is now fixed at 256; this allows for
|
|
// some crazy optimizations in the downsampling code.
|
|
for(i=0; i<leds.length; i++) { // For each LED...
|
|
d = leds[i][0]; // Corresponding display index
|
|
|
|
// Precompute columns, rows of each sampled point for this LED
|
|
range = (float)dispBounds[d].width / (float)displays[d][1];
|
|
step = range / 16.0;
|
|
start = range * (float)leds[i][1] + step * 0.5;
|
|
for(col=0; col<16; col++) x[col] = (int)(start + step * (float)col);
|
|
range = (float)dispBounds[d].height / (float)displays[d][2];
|
|
step = range / 16.0;
|
|
start = range * (float)leds[i][2] + step * 0.5;
|
|
for(row=0; row<16; row++) y[row] = (int)(start + step * (float)row);
|
|
|
|
if(useFullScreenCaps == true) {
|
|
// Get offset to each pixel within full screen capture
|
|
for(row=0; row<16; row++) {
|
|
for(col=0; col<16; col++) {
|
|
pixelOffset[i][row * 16 + col] =
|
|
y[row] * dispBounds[d].width + x[col];
|
|
}
|
|
}
|
|
} else {
|
|
// Calc min bounding rect for LED, get offset to each pixel within
|
|
ledBounds[i] = new Rectangle(x[0], y[0], x[15]-x[0]+1, y[15]-y[0]+1);
|
|
for(row=0; row<16; row++) {
|
|
for(col=0; col<16; col++) {
|
|
pixelOffset[i][row * 16 + col] =
|
|
(y[row] - y[0]) * ledBounds[i].width + x[col] - x[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i=0; i<prevColor.length; i++) {
|
|
prevColor[i][0] = prevColor[i][1] = prevColor[i][2] =
|
|
minBrightness / 3;
|
|
}
|
|
|
|
// Preview window shows all screens side-by-side
|
|
size(totalWidth * pixelSize, maxHeight * pixelSize, JAVA2D);
|
|
|
|
// A special header / magic word is expected by the corresponding LED
|
|
// streaming code running on the Arduino. This only needs to be initialized
|
|
// once (not in draw() loop) because the number of LEDs remains constant:
|
|
serialData[0] = 'A'; // Magic word
|
|
serialData[1] = 'd';
|
|
serialData[2] = 'a';
|
|
serialData[3] = (byte)((leds.length - 1) >> 8); // LED count high byte
|
|
serialData[4] = (byte)((leds.length - 1) & 0xff); // LED count low byte
|
|
serialData[5] = (byte)(serialData[3] ^ serialData[4] ^ 0x55); // Checksum
|
|
|
|
// Pre-compute gamma correction table for LED brightness levels:
|
|
for(i=0; i<256; i++) {
|
|
f = pow((float)i / 255.0, 2.8);
|
|
gamma[i][0] = (byte)(f * 255.0);
|
|
gamma[i][1] = (byte)(f * 240.0);
|
|
gamma[i][2] = (byte)(f * 220.0);
|
|
}
|
|
}
|
|
|
|
// Open and return serial connection to Arduino running LEDstream code. This
|
|
// attempts to open and read from each serial device on the system, until the
|
|
// matching "Ada\n" acknowledgement string is found. Due to the serial
|
|
// timeout, if you have multiple serial devices/ports and the Arduino is late
|
|
// in the list, this can take seemingly forever...so if you KNOW the Arduino
|
|
// will always be on a specific port (e.g. "COM6"), you might want to comment
|
|
// out most of this to bypass the checks and instead just open that port
|
|
// directly! (Modify last line in this method with the serial port name.)
|
|
|
|
Serial openPort() {
|
|
String[] ports;
|
|
String ack;
|
|
int i, start;
|
|
Serial s;
|
|
|
|
ports = Serial.list(); // List of all serial ports/devices on system.
|
|
|
|
for(i=0; i<ports.length; i++) { // For each serial port...
|
|
System.out.format("Trying serial port %s\n",ports[i]);
|
|
try {
|
|
s = new Serial(this, ports[i], 115200);
|
|
}
|
|
catch(Exception e) {
|
|
// Can't open port, probably in use by other software.
|
|
continue;
|
|
}
|
|
// Port open...watch for acknowledgement string...
|
|
start = millis();
|
|
while((millis() - start) < timeout) {
|
|
if((s.available() >= 4) &&
|
|
((ack = s.readString()) != null) &&
|
|
ack.contains("Ada\n")) {
|
|
return s; // Got it!
|
|
}
|
|
}
|
|
// Connection timed out. Close port and move on to the next.
|
|
s.stop();
|
|
}
|
|
|
|
// Didn't locate a device returning the acknowledgment string.
|
|
// Maybe it's out there but running the old LEDstream code, which
|
|
// didn't have the ACK. Can't say for sure, so we'll take our
|
|
// changes with the first/only serial device out there...
|
|
return new Serial(this, ports[0], 115200);
|
|
}
|
|
|
|
|
|
// PER_FRAME PROCESSING ------------------------------------------------------
|
|
|
|
void draw () {
|
|
BufferedImage img;
|
|
int d, i, j, o, c, weight, rb, g, sum, deficit, s2;
|
|
int[] pxls, offs;
|
|
|
|
if(useFullScreenCaps == true ) {
|
|
// Capture each screen in the displays array.
|
|
for(d=0; d<nDisplays; d++) {
|
|
img = bot[d].createScreenCapture(dispBounds[d]);
|
|
// Get location of source pixel data
|
|
screenData[d] =
|
|
((DataBufferInt)img.getRaster().getDataBuffer()).getData();
|
|
}
|
|
}
|
|
|
|
weight = 257 - fade; // 'Weighting factor' for new frame vs. old
|
|
j = 6; // Serial led data follows header / magic word
|
|
|
|
// This computes a single pixel value filtered down from a rectangular
|
|
// section of the screen. While it would seem tempting to use the native
|
|
// image scaling in Processing/Java, in practice this didn't look very
|
|
// good -- either too pixelated or too blurry, no happy medium. So
|
|
// instead, a "manual" downsampling is done here. In the interest of
|
|
// speed, it doesn't actually sample every pixel within a block, just
|
|
// a selection of 256 pixels spaced within the block...the results still
|
|
// look reasonably smooth and are handled quickly enough for video.
|
|
|
|
for(i=0; i<leds.length; i++) { // For each LED...
|
|
d = leds[i][0]; // Corresponding display index
|
|
if(useFullScreenCaps == true) {
|
|
// Get location of source data from prior full-screen capture:
|
|
pxls = screenData[d];
|
|
} else {
|
|
// Capture section of screen (LED bounds rect) and locate data::
|
|
img = bot[d].createScreenCapture(ledBounds[i]);
|
|
pxls = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
|
|
}
|
|
offs = pixelOffset[i];
|
|
rb = g = 0;
|
|
for(o=0; o<256; o++) {
|
|
c = pxls[offs[o]];
|
|
rb += c & 0x00ff00ff; // Bit trickery: R+B can accumulate in one var
|
|
g += c & 0x0000ff00;
|
|
}
|
|
|
|
// Blend new pixel value with the value from the prior frame
|
|
ledColor[i][0] = (short)((((rb >> 24) & 0xff) * weight +
|
|
prevColor[i][0] * fade) >> 8);
|
|
ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight +
|
|
prevColor[i][1] * fade) >> 8);
|
|
ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight +
|
|
prevColor[i][2] * fade) >> 8);
|
|
|
|
// Boost pixels that fall below the minimum brightness
|
|
sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2];
|
|
if(sum < minBrightness) {
|
|
if(sum == 0) { // To avoid divide-by-zero
|
|
deficit = minBrightness / 3; // Spread equally to R,G,B
|
|
ledColor[i][0] += deficit;
|
|
ledColor[i][1] += deficit;
|
|
ledColor[i][2] += deficit;
|
|
} else {
|
|
deficit = minBrightness - sum;
|
|
s2 = sum * 2;
|
|
// Spread the "brightness deficit" back into R,G,B in proportion to
|
|
// their individual contribition to that deficit. Rather than simply
|
|
// boosting all pixels at the low end, this allows deep (but saturated)
|
|
// colors to stay saturated...they don't "pink out."
|
|
ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2;
|
|
ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2;
|
|
ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2;
|
|
}
|
|
}
|
|
|
|
// Apply gamma curve and place in serial output buffer
|
|
serialData[j++] = gamma[ledColor[i][0]][0];
|
|
serialData[j++] = gamma[ledColor[i][1]][1];
|
|
serialData[j++] = gamma[ledColor[i][2]][2];
|
|
// Update pixels in preview image
|
|
preview[d].pixels[leds[i][2] * displays[d][1] + leds[i][1]] =
|
|
(ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2];
|
|
}
|
|
|
|
if(port != null) port.write(serialData); // Issue data to Arduino
|
|
|
|
// Show live preview image(s)
|
|
scale(pixelSize);
|
|
for(i=d=0; d<nDisplays; d++) {
|
|
preview[d].updatePixels();
|
|
image(preview[d], i, 0);
|
|
i += displays[d][1] + 1;
|
|
}
|
|
|
|
println(frameRate); // How are we doing?
|
|
|
|
// Copy LED color data to prior frame array for next pass
|
|
arraycopy(ledColor, 0, prevColor, 0, ledColor.length);
|
|
}
|
|
|
|
|
|
// CLEANUP -------------------------------------------------------------------
|
|
|
|
// The DisposeHandler is called on program exit (but before the Serial library
|
|
// is shutdown), in order to turn off the LEDs (reportedly more reliable than
|
|
// stop()). Seems to work for the window close box and escape key exit, but
|
|
// not the 'Quit' menu option. Thanks to phi.lho in the Processing forums.
|
|
|
|
public class DisposeHandler {
|
|
DisposeHandler(PApplet pa) {
|
|
pa.registerDispose(this);
|
|
}
|
|
public void dispose() {
|
|
// Fill serialData (after header) with 0's, and issue to Arduino...
|
|
Arrays.fill(serialData, 6, serialData.length, (byte)0);
|
|
if(port != null) port.write(serialData);
|
|
}
|
|
}
|
|
|