Adalight-FastLED_rgbwMod/Arduino/LEDstream_FastLED/LEDstream_FastLED.ino
2016-12-21 14:13:59 -05:00

193 lines
6.2 KiB
C++

/* LEDstream_FastLED
*
* Modified version of Adalight protocol that uses the FastLED
* library (http://fastled.io) for driving led strips.
*
* http://github.com/dmadison/Adalight-FastLED
* Last Updated: 2016-12-21
*/
// -- General Settings
#define NUM_LEDS 80 // strip length
#define LED_PIN 6 // Arduino data output pin
#define BRIGHTNESS 255 // maximum brightness
// --- FastLED Setings
#define LED_TYPE WS2812B // led strip type for FastLED
#define COLOR_ORDER GRB // color order for bitbang
// --- Serial Settings
#define SPEED 115200 // serial port speed, max available
static const unsigned long // time before LEDs are shut off, if no data
serialTimeout = 150000; // 150 seconds
// -- Optional Settings (uncomment to add)
//#define GROUND_PIN 10 // additional grounding pin (optional)
//#define CALIBRATE // sets all LEDs to the color of the first
// --------------------------------------------------------------------
#include <FastLED.h>
CRGB leds[NUM_LEDS];
uint8_t * ledsRaw = (uint8_t *)leds;
// A 'magic word' (along with LED count & checksum) precedes each block
// of LED data; this assists the microcontroller in syncing up with the
// host-side software and properly issuing the latch (host I/O is
// likely buffered, making usleep() unreliable for latch). You may see
// an initial glitchy frame or two until the two come into alignment.
// The magic word can be whatever sequence you like, but each character
// should be unique, and frequent pixel values like 0 and 255 are
// avoided -- fewer false positives. The host software will need to
// generate a compatible header: immediately following the magic word
// are three bytes: a 16-bit count of the number of LEDs (high byte
// first) followed by a simple checksum value (high byte XOR low byte
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
// where 0 = off and 255 = max brightness.
static const uint8_t magic[] = {
'A','d','a'};
#define MAGICSIZE sizeof(magic)
#define HEADERSIZE (MAGICSIZE + 3)
#define MODE_HEADER 0
#define MODE_DATA 2
void setup(){
#ifdef GROUND_PIN
pinMode(GROUND_PIN, OUTPUT);
digitalWrite(GROUND_PIN, LOW);
#endif
FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS);
FastLED.setBrightness(BRIGHTNESS);
Serial.begin(SPEED);
adalight();
}
void adalight(){
// Dirty trick: the circular buffer for serial data is 256 bytes,
// and the "in" and "out" indices are unsigned 8-bit types -- this
// much simplifies the cases where in/out need to "wrap around" the
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
// masking and/or conditional code every time one of these indices
// needs to change, slowing things down tremendously.
uint8_t
buffer[256],
indexIn = 0,
indexOut = 0,
mode = MODE_HEADER,
hi, lo, chk, i;
int16_t
bytesBuffered = 0,
c;
int32_t
bytesRemaining;
unsigned long
lastByteTime,
lastAckTime,
t;
int32_t
outPos = 0;
Serial.print("Ada\n"); // Send ACK string to host
lastByteTime = lastAckTime = millis();
// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.
for(;;) {
// Implementation is a simple finite-state machine.
// Regardless of mode, check for serial input each time:
t = millis();
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
buffer[indexIn++] = c;
bytesBuffered++;
lastByteTime = lastAckTime = t; // Reset timeout counters
}
else {
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > serialTimeout) {
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB)); //filling Led array by zeroes
FastLED.show();
lastByteTime = t; // Reset counter
}
}
switch(mode) {
case MODE_HEADER:
// In header-seeking mode. Is there enough data to check?
if(bytesBuffered >= HEADERSIZE) {
// Indeed. Check for a 'magic word' match.
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
if(i == MAGICSIZE) {
// Magic word matches. Now how about the checksum?
hi = buffer[indexOut++];
lo = buffer[indexOut++];
chk = buffer[indexOut++];
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
bytesBuffered -= 3;
outPos = 0;
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
else {
// Checksum didn't match; search resumes after magic word.
indexOut -= 3; // Rewind
}
} // else no header match. Resume at first mismatched byte.
bytesBuffered -= i;
}
break;
case MODE_DATA:
if(bytesRemaining > 0) {
if(bytesBuffered > 0) {
if (outPos < sizeof(leds)){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = buffer[indexOut++];
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
indexOut++;
}
#else
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
#endif
}
bytesBuffered--;
bytesRemaining--;
}
}
else {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();
}
} // end switch
} // end for(;;)
}
void loop()
{
// Not used. See note in adalight() function.
}