LEDstream for LPD8806 now compatible with stock WS2801 version

This commit is contained in:
Paint Your Dragon 2012-01-06 23:36:12 -08:00
parent 7dec765eed
commit d22622a402
2 changed files with 202 additions and 485 deletions

View file

@ -1,39 +1,65 @@
// Arduino "bridge" code between host computer and LPD8806-based digital
// addressable RGB LEDs (e.g. Adafruit product ID #306). Intended for
// use with USB-native boards such as Teensy or Adafruit 32u4 Breakout;
// works on normal serial Arduinos, but throughput is severely limited.
// LED data is streamed, not buffered, making this suitable for larger
// installations (e.g. video wall, etc.) than could otherwise be held
// in the Arduino's limited RAM.
// The LPD8806 latch condition is indicated through the data protocol,
// not through a pause in the data clock as with the WS2801. Buffer
// underruns are thus a non-issue and the code can be vastly simpler.
// Data is merely routed from serial in to SPI out.
// Arduino bridge code between host computer and LPD8806-based digital
// addressable RGB LEDs (e.g. Adafruit product ID #306). LED data is
// streamed, not buffered, making this suitable for larger installations
// (e.g. video wall, etc.) than could otherwise be contained within the
// Arduino's limited RAM. Intended for use with USB-native boards such
// as Teensy or Adafruit 32u4 Breakout; also works on normal serial
// Arduinos (Uno, etc.), but speed will be limited by the serial port.
// LED data and clock lines are connected to the Arduino's SPI output.
// On traditional Arduino boards, SPI data out is digital pin 11 and
// clock is digital pin 13. On both Teensy and the 32u4 Breakout,
// data out is pin B2, clock is B1. LEDs should be externally
// powered -- trying to run any more than just a few off the Arduino's
// 5V line is generally a Bad Idea. LED ground should also be
// connected to Arduino ground.
// On traditional Arduino boards (e.g. Uno), SPI data out is digital pin
// 11 and clock is digital pin 13. On both Teensy and the 32u4 Breakout,
// data out is pin B2, clock is B1. On Arduino Mega, 51=data, 52=clock.
// LEDs should be externally powered -- trying to run any more than just
// a few off the Arduino's 5V line is generally a Bad Idea. LED ground
// should also be connected to Arduino ground.
// Elsewhere, the WS2801 version of this code was specifically designed
// to avoid buffer underrun conditions...the WS2801 pixels automatically
// latch when the data stream stops for 500 microseconds or more, whether
// intentional or not. The LPD8806 pixels are fundamentally different --
// the latch condition is indicated within the data stream, not by pausing
// the clock -- and buffer underruns are therefore a non-issue. In theory
// it would seem this could allow the code to be much simpler and faster
// (there's no need to sync up with a start-of-frame header), but in
// practice the difference was not as pronounced as expected -- such code
// soon ran up against a USB throughput limit anyway. So, rather than
// break compatibility in the quest for speed that will never materialize,
// this code instead follows the same header format as the WS2801 version.
// This allows the same host-side code (e.g. Adalight, Adavision, etc.)
// to run with either type of LED pixels. Huzzah!
#include <SPI.h>
// A 'magic word' precedes each block of LED data; this assists the
// microcontroller in syncing up with the host-side software and latching
// frames at the correct time. You may see an initial glitchy frame or
// two until the two come into alignment. Immediately following the
// magic word are three bytes: a 16-bit count of the number of LEDs (high
// byte first) followed by a simple checksum value (high byte XOR low byte
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B, where
// 0 = off and 255 = max brightness. LPD8806 pixels only have 7-bit
// brightness control, so each value is divided by two; the 8-bit format
// is used to maintain compatibility with the protocol set forth by the
// WS2801 streaming code (those LEDs use 8-bit values).
static const uint8_t magic[] = { 'A','d','a' };
#define MAGICSIZE sizeof(magic)
#define HEADERSIZE (MAGICSIZE + 3)
static uint8_t
buffer[HEADERSIZE], // Serial input buffer
bytesBuffered = 0; // Amount of data in buffer
// If no serial data is received for a while, the LEDs are shut off
// automatically. This avoids the annoying "stuck pixel" look when
// quitting LED display programs on the host computer.
static const unsigned long serialTimeout = 15000; // 15 seconds
static unsigned long lastByteTime, lastAckTime;
void setup() {
int i, c;
unsigned long
lastByteTime,
lastAckTime,
t;
byte c;
int i, p;
Serial.begin(115200); // 32u4 ignores BPS, runs full speed
Serial.begin(115200); // 32u4 will ignore BPS and run full speed
// SPI is run at 2 MHz. LPD8806 can run much faster,
// but unshielded wiring is susceptible to interference.
@ -43,59 +69,164 @@ void setup() {
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV8); // 2 MHz
// Issue dummy byte to "prime" the SPI bus. This later simplifies
// the task of doing useful work during SPI transfers. Rather than
// the usual issue-and-wait-loop, code can instead wait-and-issue --
// with other operations occurring between transfers, the wait is
// then shortened or eliminated. The SPSR register is read-only,
// so this flag can't be forced -- SOMETHING must be issued.
SPDR = 0;
// Issue initial latch to LEDs. This flushes any undefined data that
// may exist on powerup, and prepares the LEDs to receive the first
// frame of data. Actual number of LEDs isn't known yet (this arrives
// later in frame header packets), so just latch a large number:
latch(10000);
// Issue test pattern to LEDs on startup. This helps verify that
// wiring between the Arduino and LEDs is correct. Not knowing the
// actual number of LEDs connected, this sets all of them (well, up
// to the first 25,000, so as not to be TOO time consuming) to green,
// red, blue, then off. Once you're confident everything is working
// end-to-end, it's OK to comment this out and reprogram the Arduino.
uint8_t testcolor[] = { 0x80, 0x80, 0x80, 0xff, 0x80, 0x80 };
for(char n=3; n>=0; n--) {
for(c=0; c<25000; c++) {
for(i=0; i<3; i++) {
for(SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); );
// wiring between the Arduino and LEDs is correct. Again not knowing
// the actual number of LEDs, this writes data for an arbitrarily
// large number (10K). If wiring is correct, LEDs will all light
// red, green, blue on startup, then off. Once you're confident
// everything is working end-to-end, it's OK to comment this out and
// re-upload the sketch to the Arduino.
const uint8_t testColor[] = { 0x80, 0x80, 0xff, 0x80, 0x80, 0x80 },
testOffset[] = { 1, 2, 0, 3 };
for(c=0; c<4; c++) { // for each test sequence color...
for(p=0; p<10000; p++) { // for each pixel...
for(i=0; i<3; i++) { // for each R,G,B...
while(!(SPSR & _BV(SPIF))); // Wait for prior byte out
SPDR = testColor[testOffset[c] + i]; // Issue next byte
}
}
for(c=0; c<400; c++) {
for(SPDR=0; !(SPSR & _BV(SPIF)); );
}
latch(10000);
if(c < 3) delay(250);
}
Serial.print("Ada\n"); // Send ACK string to host
SPDR = 0; // Dummy byte out to "prime" the SPI status register
lastByteTime = lastAckTime = millis();
// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.
for(;;) {
t = millis();
if((c = Serial.read()) >= 0) {
while(!(SPSR & (1<<SPIF))); // Wait for prior SPI byte out
SPDR = c; // Issue new SPI byte out
lastByteTime = lastAckTime = t; // Reset timeout counters
} else {
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > serialTimeout) {
for(c=0; c<32767; c++) {
for(SPDR=0x80; !(SPSR & _BV(SPIF)); );
}
for(c=0; c<512; c++) {
for(SPDR=0; !(SPSR & _BV(SPIF)); );
}
lastByteTime = t; // Reset counter
}
}
}
Serial.print("Ada\n"); // Send ACK string to host
lastByteTime = lastAckTime = millis(); // Initialize timers
}
// Program flow is simpler than the WS2801 code. No need for a state
// machine...instead, software just alternates between two conditions:
// a header-seeking mode (looking for the 'magic word' at the start
// of each frame of data), and a data-forwarding mode (moving bytes
// from serial input to SPI output). A proper data stream will
// consist only of alternating valid headers and valid data, so the
// loop() function is simply divided into these two parts, and repeats
// forever.
// LPD8806 pixels expect colors in G,R,B order vs. WS2801's R,G,B.
// This is used to shuffle things around later.
static const uint8_t byteOrder[] = { 2, 0, 1 };
void loop() {
// Not used. See note in setup() function.
uint8_t i, hi, lo, byteNum;
int c;
long nLEDs, remaining;
unsigned long t;
// HEADER-SEEKING BLOCK: locate 'magic word' at start of frame.
// If any data in serial buffer, shift it down to starting position.
for(i=0; i<bytesBuffered; i++)
buffer[i] = buffer[HEADERSIZE - bytesBuffered + i];
// Read bytes from serial input until there's a full header's worth.
while(bytesBuffered < HEADERSIZE) {
t = millis();
if((c = Serial.read()) >= 0) { // Data received?
buffer[bytesBuffered++] = c; // Store in buffer
lastByteTime = lastAckTime = t; // Reset timeout counters
} else { // No data, check for timeout...
if(timeout(t, 10000) == true) return; // Start over
}
}
// Have a header's worth of data. Check for 'magic word' match.
for(i=0; i<MAGICSIZE; i++) {
if(buffer[i] != magic[i]) { // No match...
if(i == 0) bytesBuffered -= 1; // resume search at next char
else bytesBuffered -= i; // resume at non-matching char
return;
}
}
// Magic word matches. Now how about the checksum?
hi = buffer[MAGICSIZE];
lo = buffer[MAGICSIZE + 1];
if(buffer[MAGICSIZE + 2] != (hi ^ lo ^ 0x55)) {
bytesBuffered -= MAGICSIZE; // No match, resume after magic word
return;
}
// Checksum appears valid. Get 16-bit LED count, add 1 (nLEDs always > 0)
nLEDs = remaining = 256L * (long)hi + (long)lo + 1L;
bytesBuffered = 0; // Clear serial buffer
byteNum = 0;
// DATA-FORWARDING BLOCK: move bytes from serial input to SPI output.
// Unfortunately can't just forward bytes directly. The data order is
// different on LPD8806 (G,R,B), so bytes are buffered in groups of 3
// and issued in the revised order.
while(remaining > 0) { // While more LED data is expected...
t = millis();
if((c = Serial.read()) >= 0) { // Successful read?
lastByteTime = lastAckTime = t; // Reset timeout counters
buffer[byteNum++] = c; // Store in data buffer
if(byteNum == 3) { // Have a full LED's worth?
while(byteNum > 0) { // Issue data in LPD8806 order...
i = 0x80 | (buffer[byteOrder[--byteNum]] >> 1);
while(!(SPSR & _BV(SPIF))); // Wait for prior byte out
SPDR = i; // Issue new byte
}
remaining--;
}
} else { // No data, check for timeout...
if(timeout(t, nLEDs) == true) return; // Start over
}
}
// Normal end of data. Issue latch, return to header-seeking mode.
latch(nLEDs);
}
static void latch(int n) { // Pass # of LEDs
n = ((n + 63) / 64) * 3; // Convert to latch length (bytes)
while(n--) { // For each latch byte...
while(!(SPSR & _BV(SPIF))); // Wait for prior byte out
SPDR = 0; // Issue next byte
}
}
// Function is called when no pending serial data is available.
static boolean timeout(
unsigned long t, // Current time, milliseconds
int nLEDs) { // Number of LEDs
// If condition persists, send an ACK packet to host once every
// second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > serialTimeout) {
long bytes = nLEDs * 3L;
latch(nLEDs); // Latch any partial/incomplete data in strand
while(bytes--) { // Issue all new data to turn off strand
while(!(SPSR & _BV(SPIF))); // Wait for prior byte out
SPDR = 0x80; // Issue next byte (0x80 = LED off)
}
latch(nLEDs); // Latch 'all off' data
lastByteTime = t; // Reset counter
bytesBuffered = 0; // Clear serial buffer
return true;
}
return false; // No timeout
}

View file

@ -1,414 +0,0 @@
// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept
// for desktop computers and home theater PCs. This is the host PC-side code
// written in Processing, intended for use with a USB-connected Arduino
// microcontroller running the accompanying LPD8806 (NOT WS2801) LED
// streaming code. Requires one or more strips of Digital Addressable RGB
// LEDs (Adafruit product ID #306, and a 5 Volt power supply (such as
// Adafruit #276). You may need to adapt the code and the hardware
// arrangement for your specific display configuration.
// Screen capture adapted from code by Cedrik Kiefer (processing.org forum)
import java.awt.*;
import java.awt.image.*;
import processing.serial.*;
// CONFIGURABLE PROGRAM CONSTANTS --------------------------------------------
// Minimum LED brightness; some users prefer a small amount of backlighting
// at all times, regardless of screen content. Higher values are brighter,
// or set to 0 to disable this feature.
static final short minBrightness = 120;
// LED transition speed; it's sometimes distracting if LEDs instantaneously
// track screen contents (such as during bright flashing sequences), so this
// feature enables a gradual fade to each new LED state. Higher numbers yield
// slower transitions (max of 255), or set to 0 to disable this feature
// (immediate transition of all LEDs).
static final short fade = 75;
// Pixel size for the live preview image.
static final int pixelSize = 20;
// Depending on many factors, it may be faster either to capture full
// screens and process only the pixels needed, or to capture multiple
// smaller sub-blocks bounding each region to be processed. Try both,
// look at the reported frame rates in the Processing output console,
// and run with whichever works best for you.
static final boolean useFullScreenCaps = true;
// Serial device timeout (in milliseconds), for locating Arduino device
// running the corresponding LEDstream code. See notes later in the code...
// in some situations you may want to entirely comment out that block.
static final int timeout = 5000; // 5 seconds
// PER-DISPLAY INFORMATION ---------------------------------------------------
// This array contains details for each display that the software will
// process. If you have screen(s) attached that are not among those being
// "Adalighted," they should not be in this list. Each triplet in this
// array represents one display. The first number is the system screen
// number...typically the "primary" display on most systems is identified
// as screen #1, but since arrays are indexed from zero, use 0 to indicate
// the first screen, 1 to indicate the second screen, and so forth. This
// is the ONLY place system screen numbers are used...ANY subsequent
// references to displays are an index into this list, NOT necessarily the
// same as the system screen number. For example, if you have a three-
// screen setup and are illuminating only the third display, use '2' for
// the screen number here...and then, in subsequent section, '0' will be
// used to refer to the first/only display in this list.
// The second and third numbers of each triplet represent the width and
// height of a grid of LED pixels attached to the perimeter of this display.
// For example, '9,6' = 9 LEDs across, 6 LEDs down.
static final int displays[][] = new int[][] {
{0,12,6} // Screen 0, 12 LEDs across, 6 LEDs down
//,{1,12,6} // Screen 1, also 12 LEDs across and 6 LEDs down
};
// PER-LED INFORMATION -------------------------------------------------------
// This array contains the 2D coordinates corresponding to each pixel in the
// LED strand, in the order that they're connected (i.e. the first element
// here belongs to the first LED in the strand, second element is the second
// LED, and so forth). Each triplet in this array consists of a display
// number (an index into the display array above, NOT necessarily the same as
// the system screen number) and an X and Y coordinate specified in the grid
// units given for that display. {0,0,0} is the top-left corner of the first
// display in the array.
// For our example purposes, the coordinate list below forms a ring around
// the perimeter of a single screen, with a one pixel gap at the bottom to
// accommodate a monitor stand. Modify this to match your own setup:
static final int leds[][] = new int[][] {
{0, 5,5}, {0, 4,5}, {0, 3,5}, {0, 2,5}, {0, 1,5}, {0, 0,5}, // Bottom edge, left half
{0, 0,4}, {0, 0,3}, {0, 0,2}, {0, 0,1}, // Left edge
{0, 0,0}, {0, 1,0}, {0, 2,0}, {0, 3,0}, {0, 4,0}, {0, 5,0}, // Top edge, left half
{0, 6,0}, {0, 7,0}, {0, 8,0}, {0, 9,0}, {0,10,0}, {0,11,0}, // Top edge, right half
{0,11,1}, {0,11,2}, {0,11,3}, {0,11,4}, // Right edge
{0,11,5}, {0,10,5}, {0, 9,5}, {0, 8,5}, {0, 7,5}, {0, 6,5}, // Bottom edge, right half
/* Hypothetical second display has the same arrangement as the first.
But you might not want both displays completely ringed with LEDs;
the screens might be positioned where they share an edge in common.
, {1, 5,5}, {1, 4,5}, {1, 3,5}, {1, 2,5}, {1, 1,5}, {1, 0,5}, // Bottom edge, left half
{1, 0,4}, {1, 0,3}, {1, 0,2}, {1, 0,1}, // Left edge
{1, 0,0}, {1, 1,0}, {1, 2,0}, {1, 3,0}, {1, 4,0}, {1, 5,0}, // Top edge, left half
{1, 6,0}, {1, 7,0}, {1, 8,0}, {1, 9,0}, {1,10,0}, {1,11,0}, // Top edge, right half
{1,11,1}, {1,11,2}, {1,11,3}, {1,11,4}, // Right edge
{1,11,5}, {1,10,5}, {1, 9,5}, {1, 8,5}, {1, 7,5}, {1, 6,5}, // Bottom edge, right half
*/
};
// GLOBAL VARIABLES ---- You probably won't need to modify any of this -------
static final int latchLen = (leds.length + 63) / 64;
byte[] serialData = new byte[(leds.length + latchLen) * 3];
short[][] ledColor = new short[leds.length][3],
prevColor = new short[leds.length][3];
byte[][] gamma = new byte[256][3];
int nDisplays = displays.length;
Robot[] bot = new Robot[displays.length];
Rectangle[] dispBounds = new Rectangle[displays.length],
ledBounds; // Alloc'd only if per-LED captures
int[][] pixelOffset = new int[leds.length][256],
screenData; // Alloc'd only if full-screen captures
PImage[] preview = new PImage[displays.length];
Serial port;
DisposeHandler dh; // For disabling LEDs on exit
// INITIALIZATION ------------------------------------------------------------
void setup() {
GraphicsEnvironment ge;
GraphicsConfiguration[] gc;
GraphicsDevice[] gd;
int d, i, totalWidth, maxHeight, row, col, rowOffset;
int[] x = new int[16], y = new int[16];
float f, range, step, start;
dh = new DisposeHandler(this); // Init DisposeHandler ASAP
// Open serial port. As written here, this assumes the Arduino is the
// first/only serial device on the system. If that's not the case,
// change "Serial.list()[0]" to the name of the port to be used:
port = new Serial(this, Serial.list()[0], 115200);
// Alternately, in certain situations the following line can be used
// to detect the Arduino automatically. But this works ONLY with SOME
// Arduino boards and versions of Processing! This is so convoluted
// to explain, it's easier just to test it yourself and see whether
// it works...if not, leave it commented out and use the prior port-
// opening technique.
// port = openPort();
// And finally, to test the software alone without an Arduino connected,
// don't open a port...just comment out the serial lines above.
// Initialize screen capture code for each display's dimensions.
dispBounds = new Rectangle[displays.length];
if(useFullScreenCaps == true) {
screenData = new int[displays.length][];
// ledBounds[] not used
} else {
ledBounds = new Rectangle[leds.length];
// screenData[][] not used
}
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
gd = ge.getScreenDevices();
if(nDisplays > gd.length) nDisplays = gd.length;
totalWidth = maxHeight = 0;
for(d=0; d<nDisplays; d++) { // For each display...
try {
bot[d] = new Robot(gd[displays[d][0]]);
}
catch(AWTException e) {
System.out.println("new Robot() failed");
continue;
}
gc = gd[displays[d][0]].getConfigurations();
dispBounds[d] = gc[0].getBounds();
dispBounds[d].x = dispBounds[d].y = 0;
preview[d] = createImage(displays[d][1], displays[d][2], RGB);
preview[d].loadPixels();
totalWidth += displays[d][1];
if(d > 0) totalWidth++;
if(displays[d][2] > maxHeight) maxHeight = displays[d][2];
}
// Precompute locations of every pixel to read when downsampling.
// Saves a bunch of math on each frame, at the expense of a chunk
// of RAM. Number of samples is now fixed at 256; this allows for
// some crazy optimizations in the downsampling code.
for(i=0; i<leds.length; i++) { // For each LED...
d = leds[i][0]; // Corresponding display index
// Precompute columns, rows of each sampled point for this LED
range = (float)dispBounds[d].width / (float)displays[d][1];
step = range / 16.0;
start = range * (float)leds[i][1] + step * 0.5;
for(col=0; col<16; col++) x[col] = (int)(start + step * (float)col);
range = (float)dispBounds[d].height / (float)displays[d][2];
step = range / 16.0;
start = range * (float)leds[i][2] + step * 0.5;
for(row=0; row<16; row++) y[row] = (int)(start + step * (float)row);
if(useFullScreenCaps == true) {
// Get offset to each pixel within full screen capture
for(row=0; row<16; row++) {
for(col=0; col<16; col++) {
pixelOffset[i][row * 16 + col] =
y[row] * dispBounds[d].width + x[col];
}
}
} else {
// Calc min bounding rect for LED, get offset to each pixel within
ledBounds[i] = new Rectangle(x[0], y[0], x[15]-x[0]+1, y[15]-y[0]+1);
for(row=0; row<16; row++) {
for(col=0; col<16; col++) {
pixelOffset[i][row * 16 + col] =
(y[row] - y[0]) * ledBounds[i].width + x[col] - x[0];
}
}
}
}
for(i=0; i<prevColor.length; i++) {
prevColor[i][0] = prevColor[i][1] = prevColor[i][2] =
minBrightness / 3;
}
// Preview window shows all screens side-by-side
size(totalWidth * pixelSize, maxHeight * pixelSize, JAVA2D);
// The "gamma" table actually does three things: applies gamma
// correction to input colors to produce a more perceptually linear
// output range, reduces 8-bit inputs to 7-bit outputs, and sets the
// high bit as required by the LPD8806 LED data protocol.
for(i=0; i<256; i++) {
f = pow((float)i / 255.0, 2.8);
gamma[i][0] = (byte)(0x80 | (int)(0.5 + f * 127.0)); // Adjust these numbers
gamma[i][1] = (byte)(0x80 | (int)(0.5 + f * 127.0)); // if color balance seems
gamma[i][2] = (byte)(0x80 | (int)(0.5 + f * 127.0)); // out of whack.
}
}
// Open and return serial connection to Arduino running LEDstream code. This
// attempts to open and read from each serial device on the system, until the
// matching "Ada\n" acknowledgement string is found. Due to the serial
// timeout, if you have multiple serial devices/ports and the Arduino is late
// in the list, this can take seemingly forever...so if you KNOW the Arduino
// will always be on a specific port (e.g. "COM6"), you might want to comment
// out most of this to bypass the checks and instead just open that port
// directly! (Modify last line in this method with the serial port name.)
Serial openPort() {
String[] ports;
String ack;
int i, start;
Serial s;
ports = Serial.list(); // List of all serial ports/devices on system.
for(i=0; i<ports.length; i++) { // For each serial port...
System.out.format("Trying serial port %s\n",ports[i]);
try {
s = new Serial(this, ports[i], 115200);
}
catch(Exception e) {
// Can't open port, probably in use by other software.
continue;
}
// Port open...watch for acknowledgement string...
start = millis();
while((millis() - start) < timeout) {
if((s.available() >= 4) &&
((ack = s.readString()) != null) &&
ack.contains("Ada\n")) {
return s; // Got it!
}
}
// Connection timed out. Close port and move on to the next.
s.stop();
}
// Didn't locate a device returning the acknowledgment string.
// Maybe it's out there but running the old LEDstream code, which
// didn't have the ACK. Can't say for sure, so we'll take our
// changes with the first/only serial device out there...
return new Serial(this, ports[0], 115200);
}
// PER-FRAME PROCESSING ------------------------------------------------------
void draw () {
BufferedImage img;
int d, i, j, o, c, weight, rb, g, sum, deficit, s2;
int[] pxls, offs;
if(useFullScreenCaps == true ) {
// Capture each screen in the displays array.
for(d=0; d<nDisplays; d++) {
img = bot[d].createScreenCapture(dispBounds[d]);
// Get location of source pixel data
screenData[d] =
((DataBufferInt)img.getRaster().getDataBuffer()).getData();
}
}
weight = 257 - fade; // 'Weighting factor' for new frame vs. old
// This computes a single pixel value filtered down from a rectangular
// section of the screen. While it would seem tempting to use the native
// image scaling in Processing/Java, in practice this didn't look very
// good -- either too pixelated or too blurry, no happy medium. So
// instead, a "manual" downsampling is done here. In the interest of
// speed, it doesn't actually sample every pixel within a block, just
// a selection of 256 pixels spaced within the block...the results still
// look reasonably smooth and are handled quickly enough for video.
for(i=j=0; i<leds.length; i++) { // For each LED...
d = leds[i][0]; // Corresponding display index
if(useFullScreenCaps == true) {
// Get location of source data from prior full-screen capture:
pxls = screenData[d];
} else {
// Capture section of screen (LED bounds rect) and locate data::
img = bot[d].createScreenCapture(ledBounds[i]);
pxls = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
}
offs = pixelOffset[i];
rb = g = 0;
for(o=0; o<256; o++) {
c = pxls[offs[o]];
rb += c & 0x00ff00ff; // Bit trickery: R+B can accumulate in one var
g += c & 0x0000ff00;
}
// Blend new pixel value with the value from the prior frame
ledColor[i][0] = (short)((((rb >> 24) & 0xff) * weight +
prevColor[i][0] * fade) >> 8);
ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight +
prevColor[i][1] * fade) >> 8);
ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight +
prevColor[i][2] * fade) >> 8);
// Boost pixels that fall below the minimum brightness
sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2];
if(sum < minBrightness) {
if(sum == 0) { // To avoid divide-by-zero
deficit = minBrightness / 3; // Spread equally to R,G,B
ledColor[i][0] += deficit;
ledColor[i][1] += deficit;
ledColor[i][2] += deficit;
} else {
deficit = minBrightness - sum;
s2 = sum * 2;
// Spread the "brightness deficit" back into R,G,B in proportion to
// their individual contribition to that deficit. Rather than simply
// boosting all pixels at the low end, this allows deep (but saturated)
// colors to stay saturated...they don't "pink out."
ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2;
ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2;
ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2;
}
}
// Apply gamma curve and place in serial output buffer
serialData[j++] = gamma[ledColor[i][1]][1]; // G
serialData[j++] = gamma[ledColor[i][0]][0]; // R
serialData[j++] = gamma[ledColor[i][2]][2]; // B
// Update pixels in preview image
preview[d].pixels[leds[i][2] * displays[d][1] + leds[i][1]] =
(ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2];
}
if(port != null) {
port.write(serialData); // Issue data to Arduino
// You *might* need to comment out the above line and use
// the following code instead. Long writes fail for some
// unknown reason. RXTX lib? Processing? Java? OS? Hardware?
// for(i=0; i<serialData.length; i=j) {
// j = i + 255;
// if(j > serialData.length) j = serialData.length;
// port.write(Arrays.copyOfRange(serialData,i,j));
// }
}
// Show live preview image(s)
scale(pixelSize);
for(i=d=0; d<nDisplays; d++) {
preview[d].updatePixels();
image(preview[d], i, 0);
i += displays[d][1] + 1;
}
println(frameRate); // How are we doing?
// Copy LED color data to prior frame array for next pass
arraycopy(ledColor, 0, prevColor, 0, ledColor.length);
}
// CLEANUP -------------------------------------------------------------------
// The DisposeHandler is called on program exit (but before the Serial library
// is shutdown), in order to turn off the LEDs (reportedly more reliable than
// stop()). Seems to work for the window close box and escape key exit, but
// not the 'Quit' menu option. Thanks to phi.lho in the Processing forums.
public class DisposeHandler {
DisposeHandler(PApplet pa) {
pa.registerDispose(this);
}
public void dispose() {
if(port != null) {
Arrays.fill(serialData, 0, serialData.length - latchLen, (byte)0x80);
port.write(serialData);
}
}
}