commit
672f401a4d
1 changed files with 129 additions and 128 deletions
|
@ -9,9 +9,9 @@
|
||||||
|
|
||||||
// --- General Settings
|
// --- General Settings
|
||||||
static const uint8_t
|
static const uint8_t
|
||||||
Num_Leds = 80, // strip length
|
Num_Leds = 80, // strip length
|
||||||
Led_Pin = 6, // Arduino data output pin
|
Led_Pin = 6, // Arduino data output pin
|
||||||
Brightness = 255; // maximum brightness
|
Brightness = 255; // maximum brightness
|
||||||
|
|
||||||
// --- FastLED Setings
|
// --- FastLED Setings
|
||||||
#define LED_TYPE WS2812B // led strip type for FastLED
|
#define LED_TYPE WS2812B // led strip type for FastLED
|
||||||
|
@ -21,7 +21,7 @@ static const uint8_t
|
||||||
static const unsigned long
|
static const unsigned long
|
||||||
SerialSpeed = 115200, // serial port speed, max available
|
SerialSpeed = 115200, // serial port speed, max available
|
||||||
SerialTimeout = 150000; // time before LEDs are shut off, if no data
|
SerialTimeout = 150000; // time before LEDs are shut off, if no data
|
||||||
// (150 seconds)
|
// (150 seconds)
|
||||||
|
|
||||||
// --- Optional Settings (uncomment to add)
|
// --- Optional Settings (uncomment to add)
|
||||||
//#define CLEAR_ON_START // LEDs are cleared on reset
|
//#define CLEAR_ON_START // LEDs are cleared on reset
|
||||||
|
@ -38,19 +38,19 @@ uint8_t * ledsRaw = (uint8_t *)leds;
|
||||||
// A 'magic word' (along with LED count & checksum) precedes each block
|
// A 'magic word' (along with LED count & checksum) precedes each block
|
||||||
// of LED data; this assists the microcontroller in syncing up with the
|
// of LED data; this assists the microcontroller in syncing up with the
|
||||||
// host-side software and properly issuing the latch (host I/O is
|
// host-side software and properly issuing the latch (host I/O is
|
||||||
// likely buffered, making usleep() unreliable for latch). You may see
|
// likely buffered, making usleep() unreliable for latch). You may see
|
||||||
// an initial glitchy frame or two until the two come into alignment.
|
// an initial glitchy frame or two until the two come into alignment.
|
||||||
// The magic word can be whatever sequence you like, but each character
|
// The magic word can be whatever sequence you like, but each character
|
||||||
// should be unique, and frequent pixel values like 0 and 255 are
|
// should be unique, and frequent pixel values like 0 and 255 are
|
||||||
// avoided -- fewer false positives. The host software will need to
|
// avoided -- fewer false positives. The host software will need to
|
||||||
// generate a compatible header: immediately following the magic word
|
// generate a compatible header: immediately following the magic word
|
||||||
// are three bytes: a 16-bit count of the number of LEDs (high byte
|
// are three bytes: a 16-bit count of the number of LEDs (high byte
|
||||||
// first) followed by a simple checksum value (high byte XOR low byte
|
// first) followed by a simple checksum value (high byte XOR low byte
|
||||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||||
// where 0 = off and 255 = max brightness.
|
// where 0 = off and 255 = max brightness.
|
||||||
|
|
||||||
static const uint8_t magic[] = {
|
static const uint8_t magic[] = {
|
||||||
'A','d','a'};
|
'A','d','a'};
|
||||||
#define MAGICSIZE sizeof(magic)
|
#define MAGICSIZE sizeof(magic)
|
||||||
#define HEADERSIZE (MAGICSIZE + 3)
|
#define HEADERSIZE (MAGICSIZE + 3)
|
||||||
|
|
||||||
|
@ -58,143 +58,144 @@ static const uint8_t magic[] = {
|
||||||
#define MODE_DATA 2
|
#define MODE_DATA 2
|
||||||
|
|
||||||
void setup(){
|
void setup(){
|
||||||
#ifdef GROUND_PIN
|
#ifdef GROUND_PIN
|
||||||
pinMode(GROUND_PIN, OUTPUT);
|
pinMode(GROUND_PIN, OUTPUT);
|
||||||
digitalWrite(GROUND_PIN, LOW);
|
digitalWrite(GROUND_PIN, LOW);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
|
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
|
||||||
FastLED.setBrightness(Brightness);
|
FastLED.setBrightness(Brightness);
|
||||||
|
|
||||||
#ifdef CLEAR_ON_START
|
#ifdef CLEAR_ON_START
|
||||||
FastLED.show();
|
FastLED.show();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
Serial.begin(SerialSpeed);
|
Serial.begin(SerialSpeed);
|
||||||
|
|
||||||
adalight();
|
adalight();
|
||||||
}
|
}
|
||||||
|
|
||||||
void adalight(){
|
void adalight(){
|
||||||
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
||||||
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
||||||
// much simplifies the cases where in/out need to "wrap around" the
|
// much simplifies the cases where in/out need to "wrap around" the
|
||||||
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
||||||
// masking and/or conditional code every time one of these indices
|
// masking and/or conditional code every time one of these indices
|
||||||
// needs to change, slowing things down tremendously.
|
// needs to change, slowing things down tremendously.
|
||||||
|
|
||||||
uint8_t
|
uint8_t
|
||||||
buffer[256],
|
buffer[256],
|
||||||
indexIn = 0,
|
indexIn = 0,
|
||||||
indexOut = 0,
|
indexOut = 0,
|
||||||
mode = MODE_HEADER,
|
mode = MODE_HEADER,
|
||||||
hi, lo, chk, i;
|
hi, lo, chk, i;
|
||||||
int16_t
|
int16_t
|
||||||
c;
|
c;
|
||||||
uint16_t
|
uint16_t
|
||||||
bytesBuffered = 0;
|
bytesBuffered = 0;
|
||||||
uint32_t
|
uint32_t
|
||||||
bytesRemaining,
|
bytesRemaining,
|
||||||
outPos;
|
outPos;
|
||||||
unsigned long
|
unsigned long
|
||||||
lastByteTime,
|
lastByteTime,
|
||||||
lastAckTime,
|
lastAckTime,
|
||||||
t;
|
t;
|
||||||
|
|
||||||
Serial.print("Ada\n"); // Send ACK string to host
|
Serial.print("Ada\n"); // Send ACK string to host
|
||||||
|
|
||||||
lastByteTime = lastAckTime = millis();
|
lastByteTime = lastAckTime = millis();
|
||||||
|
|
||||||
// loop() is avoided as even that small bit of function overhead
|
// loop() is avoided as even that small bit of function overhead
|
||||||
// has a measurable impact on this code's overall throughput.
|
// has a measurable impact on this code's overall throughput.
|
||||||
|
|
||||||
for(;;) {
|
for(;;) {
|
||||||
|
|
||||||
// Implementation is a simple finite-state machine.
|
// Implementation is a simple finite-state machine.
|
||||||
// Regardless of mode, check for serial input each time:
|
// Regardless of mode, check for serial input each time:
|
||||||
t = millis();
|
t = millis();
|
||||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||||
buffer[indexIn++] = c;
|
buffer[indexIn++] = c;
|
||||||
bytesBuffered++;
|
bytesBuffered++;
|
||||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// No data received. If this persists, send an ACK packet
|
// No data received. If this persists, send an ACK packet
|
||||||
// to host once every second to alert it to our presence.
|
// to host once every second to alert it to our presence.
|
||||||
if((t - lastAckTime) > 1000) {
|
if((t - lastAckTime) > 1000) {
|
||||||
Serial.print("Ada\n"); // Send ACK string to host
|
Serial.print("Ada\n"); // Send ACK string to host
|
||||||
lastAckTime = t; // Reset counter
|
lastAckTime = t; // Reset counter
|
||||||
}
|
}
|
||||||
// If no data received for an extended time, turn off all LEDs.
|
// If no data received for an extended time, turn off all LEDs.
|
||||||
if((t - lastByteTime) > SerialTimeout) {
|
if((t - lastByteTime) > SerialTimeout) {
|
||||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
||||||
FastLED.show();
|
FastLED.show();
|
||||||
lastByteTime = t; // Reset counter
|
lastByteTime = t; // Reset counter
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
switch(mode) {
|
switch(mode) {
|
||||||
|
|
||||||
case MODE_HEADER:
|
case MODE_HEADER:
|
||||||
|
|
||||||
// In header-seeking mode. Is there enough data to check?
|
// In header-seeking mode. Is there enough data to check?
|
||||||
if(bytesBuffered >= HEADERSIZE) {
|
if(bytesBuffered >= HEADERSIZE) {
|
||||||
// Indeed. Check for a 'magic word' match.
|
// Indeed. Check for a 'magic word' match.
|
||||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||||
if(i == MAGICSIZE) {
|
if(i == MAGICSIZE) {
|
||||||
// Magic word matches. Now how about the checksum?
|
// Magic word matches. Now how about the checksum?
|
||||||
hi = buffer[indexOut++];
|
hi = buffer[indexOut++];
|
||||||
lo = buffer[indexOut++];
|
lo = buffer[indexOut++];
|
||||||
chk = buffer[indexOut++];
|
chk = buffer[indexOut++];
|
||||||
if(chk == (hi ^ lo ^ 0x55)) {
|
if(chk == (hi ^ lo ^ 0x55)) {
|
||||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||||
bytesBuffered -= 3;
|
bytesBuffered -= 3;
|
||||||
outPos = 0;
|
outPos = 0;
|
||||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||||
mode = MODE_DATA; // Proceed to latch wait mode
|
mode = MODE_DATA; // Proceed to latch wait mode
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// Checksum didn't match; search resumes after magic word.
|
// Checksum didn't match; search resumes after magic word.
|
||||||
indexOut -= 3; // Rewind
|
indexOut -= 3; // Rewind
|
||||||
}
|
}
|
||||||
} // else no header match. Resume at first mismatched byte.
|
} // else no header match. Resume at first mismatched byte.
|
||||||
bytesBuffered -= i;
|
bytesBuffered -= i;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case MODE_DATA:
|
case MODE_DATA:
|
||||||
|
|
||||||
if(bytesRemaining > 0) {
|
if(bytesRemaining > 0) {
|
||||||
if(bytesBuffered > 0) {
|
if(bytesBuffered > 0) {
|
||||||
if (outPos < sizeof(leds)){
|
if (outPos < sizeof(leds)){
|
||||||
#ifdef CALIBRATE
|
#ifdef CALIBRATE
|
||||||
if(outPos < 3)
|
if(outPos < 3)
|
||||||
ledsRaw[outPos++] = buffer[indexOut++];
|
ledsRaw[outPos++] = buffer[indexOut++];
|
||||||
else{
|
else{
|
||||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||||
outPos++;
|
outPos++;
|
||||||
indexOut++;
|
indexOut++;
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
|
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
bytesBuffered--;
|
bytesBuffered--;
|
||||||
bytesRemaining--;
|
bytesRemaining--;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// End of data -- issue latch:
|
// End of data -- issue latch:
|
||||||
mode = MODE_HEADER; // Begin next header search
|
mode = MODE_HEADER; // Begin next header search
|
||||||
FastLED.show();
|
FastLED.show();
|
||||||
}
|
}
|
||||||
} // end switch
|
} // end switch
|
||||||
} // end for(;;)
|
} // end for(;;)
|
||||||
}
|
}
|
||||||
|
|
||||||
void loop()
|
void loop()
|
||||||
{
|
{
|
||||||
// Not used. See note in adalight() function.
|
// loop() is avoided as even that small bit of function overhead
|
||||||
|
// has a measurable impact on this code's overall throughput.
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue