reflow/reflowctl/reflowctl.ino

300 lines
5.8 KiB
C++

#define START_STATE 0
#define PREHEAT_STATE 1
#define RAMP_UP_STATE 2
#define TAL_FIRST_STATE 3
#define PEAK_STATE 4
#define TAL_SECOND_STATE 5
#define RAMP_DOWN_STATE 6
#define END_STATE 7
#define ERROR_STATE 8
// error conditions
#define E_DT_MIN 1 // temperatur dt too small
#define E_DT_MAX 2 // temperatur dt too big
#define E_TIME_MAX 4 // reflow process does take too long
#define E_PEAK_TOO_LONG 8 // package was roasted
unsigned int time = 0; // profile seconds
unsigned int temperatur = 25; // actual oven temp
unsigned int last_temperatur = 25;
unsigned int actual_dt = 0;
// profile stuff
unsigned int Ts_min = 150; // °C
unsigned int Ts_max = 200; // °C
unsigned int Tp = 260; // 245-260°C
unsigned int rampup_rate = 50; // 3°C/s
unsigned int preheat_duration = 100; // 60-180s
unsigned int Tl = 217; // 217°C
unsigned int Tl_duration = 100; // 60-150s
unsigned int peak_duration = 30; // 20-40s
unsigned int rampdown_max = 6; // 6°C/s max
unsigned int rampdown_min = 2; // 2°C/s max
unsigned int time_max = 480; // 8*60s max
unsigned int Ts_min_time = 0;
unsigned int Ts_max_time = 0;
unsigned int Tl_time_start = 0;
unsigned int Tl_time_end = 0;
unsigned int Tp_time_start = 0;
unsigned int Tp_time_end = 0;
unsigned int error_condition = 0;
boolean is_oven_heating = false;
boolean led_on = false;
byte state = START_STATE;
int analogPin = 2;
int hysteresis = 0;
int set_min = 0;
int set_max = 0;
int set_dt_min = 0;
int set_dt_max = 0;
void setup() {
Serial.begin(9600);
delay(2000);
set_start_state();
}
void control_oven() {
if (temperatur < set_min && (!is_oven_heating)) {
is_oven_heating = true;
Serial.println("Oven turned on");
}
else if (temperatur > set_max && is_oven_heating) {
is_oven_heating = false;
Serial.println("Oven turned off");
}
}
void set_temp(int min, int max, int dt_min, int dt_max) {
set_min = min;
set_max = max;
set_dt_min = dt_min;
set_dt_max = dt_max;
}
void get_temp() {
last_temperatur = temperatur;
temperatur = int(float(analogRead(analogPin)) * 0.2929);
actual_dt = temperatur - last_temperatur;
}
void check_dt() {
if (actual_dt > set_dt_max) {
error_condition |= E_DT_MAX;
}
if (actual_dt < set_dt_min) {
error_condition |= E_DT_MIN;
}
}
void print_debug() {
Serial.print("Time: ");
Serial.print(time);
Serial.print(", temperatur: ");
Serial.print(temperatur);
Serial.print(", last_temperatur: ");
Serial.print(last_temperatur);
Serial.print(", state: ");
Serial.print(state);
Serial.print(", Error: ");
Serial.println(error_condition);
}
// boolean check_max_duration() {
// if (time > time_max) {
// error_condition = E_TIME_MAX;
// return false;
// }
// }
/*
boolean check_Tl_duration() {
if (time > time_max) {
error_condition = E_TIME_MAX;
return false;
}
}*/
void set_start_state() {
get_temp();
last_temperatur = temperatur;
set_temp(Tp-5, Tp, 0, rampup_rate);
}
void set_preheat_state() {
}
void set_ramp_up_state() {
}
void set_tal_first_state() {
}
void set_peak_state() {
Serial.println("Changed state to PEAK_STATE");
}
void set_tal_second_state() {
Serial.println("Changed state to TAL_SECOND_STATE");
set_temp(25, 25, -3, -6);
state++;
}
void set_ramp_down_state() {
Serial.println("Changed state to RAMP_DOWN_STATE");
state++;
}
void set_end_state() {
state = END_STATE;
}
void set_error_state() {
if (state != ERROR_STATE) {
set_temp(0, 0, 0, 0);
state = ERROR_STATE;
}
}
void handle_start_state() {
Serial.println("START_STATE");
if (temperatur > Ts_min) {
Serial.println("Changing state to PREHEAT_STATE");
Ts_min_time = time;
state++;
}
}
void handle_preheat_state() {
Serial.println("PREHEAT_STATE");
if (temperatur > Ts_max) {
Serial.println("Changed state to RAMP_UP_STATE");
Ts_max_time = time;
state++;
}
}
void handle_rampup_state() {
Serial.println("RAMP_UP_STATE");
if (temperatur > Tl) {
Serial.println("Changed state to TAL_FIRST_STATE");
Tl_time_start = time;
state++;
}
}
void handle_tal_first_state() {
Serial.println("TAL_FIRST_STATE");
if (temperatur > Tp - 5) {
Serial.println("Changed state to PEAK_STATE");
Tp_time_start = time;
state++;
set_peak_state();
}
}
void handle_peak_state() {
Serial.println("PEAK_STATE");
if (time - Tp_time_start > peak_duration) {
Tp_time_end = time;
set_tal_second_state();
}
}
void handle_tal_second_state() {
if (temperatur < Tl) {
set_ramp_down_state();
}
}
void handle_ramp_down_state() {
if (temperatur < Ts_min) {
Serial.println("Changed state to END_STATE");
state++;
}
}
void handle_error_state() {
if (led_on) {
digitalWrite(13, LOW);
led_on = false;
}
else {
digitalWrite(13, HIGH);
led_on = true;
}
if (error_condition & E_DT_MIN)
Serial.print("Error: delta °K/second too low");
if (error_condition & E_DT_MAX)
Serial.print("Error: delta °K/second too big");
}
void loop() {
time = millis() / 1000;
get_temp();
check_dt();
if (error_condition) {
set_error_state();
}
else {
print_debug();
}
switch (state) {
case START_STATE:
handle_start_state();
break;
case PREHEAT_STATE:
handle_preheat_state();
break;
case RAMP_UP_STATE:
handle_rampup_state();
break;
case TAL_FIRST_STATE:
handle_tal_first_state();
break;
case PEAK_STATE:
handle_peak_state();
break;
case TAL_SECOND_STATE:
Tl_time_end = time;
handle_tal_second_state();
break;
case RAMP_DOWN_STATE:
handle_ramp_down_state();
break;
case END_STATE:
Serial.println("END_STATE");
break;
case ERROR_STATE:
handle_error_state();
break;
default:
break;
}
control_oven();
delay(1000);
}