#include "NeoPatterns.h" NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) : Adafruit_NeoPixel(pixels, pin, type) { OnComplete = callback; // TODO: Arrays hier initialisieren mit konkreten Werten? Und in der NeoPatterns.h nur der Platzhalter? //Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t. pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); } void NeoPatterns::Update() { if ((millis() - lastUpdate) > Interval) // time to update { lastUpdate = millis(); switch (ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case RANDOM_FADE: RandomFadeUpdate(); break; case SMOOTH: SmoothUpdate(); break; case NONE: break; default: break; } } } void NeoPatterns::Increment() { if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps - 1; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } } void NeoPatterns::Reverse() { if (Direction == FORWARD) { Direction = REVERSE; Index = TotalSteps - 1; } else { Direction = FORWARD; Index = 0; } } void NeoPatterns::None() { if (ActivePattern != NONE) { clear(); show(); } ActivePattern = NONE; } /****************** Effects ******************/ void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } void NeoPatterns::RainbowCycleUpdate() { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255)); } show(); Increment(); } void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } void NeoPatterns::TheaterChaseUpdate() { for (int i = 0; i < numPixels(); i++) { if ((i + Index) % 3 == 0) { setPixelColor(i, Color1); } else { setPixelColor(i, Color2); } } show(); Increment(); } void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = numPixels(); Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void NeoPatterns::ColorWipeUpdate() { setPixelColor(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = 0; wPos = 0; this->colorful = colorful; this->spiral = spiral; } // Update the Scanner Pattern void NeoPatterns::ScannerUpdate() { if (colorful) { Color1 = Wheel(wPos); if (wPos >= 255) { wPos = 0; } else { wPos++; } } for (int i = 0; i < numPixels(); i++) { int finalpos; if (spiral) { finalpos = numToSpiralPos(i); } else { finalpos = i; } if (i == Index) // Scan Pixel to the right { setPixelColor(finalpos, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(finalpos, Color1); } else // Fading tail { setPixelColor(finalpos, DimColor(getPixelColor(finalpos))); } } show(); Increment(); } void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void NeoPatterns::FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } void NeoPatterns::RandomFade(uint8_t interval ) { ActivePattern = RANDOM_FADE; Interval = interval; TotalSteps = 255; Index = 0; } void NeoPatterns::RandomFadeUpdate() { ColorSet(Wheel(Index)); Increment(); } void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) { ActivePattern = SMOOTH; Interval = interval; TotalSteps = 1000; // Beim Smooth nicht sinnvoll? Index = 0; WheelSpeed = wheelSpeed; Smoothing = smoothing; Strength = strength; movingPoint_x = 3; movingPoint_y = 3; // Clear buffer (from previous or different effects) for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = 0; pixelG_buffer[i] = 0; pixelB_buffer[i] = 0; } } void NeoPatterns::SmoothUpdate() { uint32_t c = Wheel(wPos); wPosSlow += WheelSpeed; wPos = (wPos + (wPosSlow / 10) ) % 255; wPosSlow = wPosSlow % 16; uint8_t r = (uint8_t)(c >> 16); uint8_t g = (uint8_t)(c >> 8); uint8_t b = (uint8_t)c; movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } uint8_t startx = movingPoint_x; uint8_t starty = movingPoint_y; for (int i = 0; i < Strength; i++) { movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]--; } } movingPoint_x = startx; movingPoint_y = starty; for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0); pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0); pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0); } for (int i = 0; i < numPixels(); i++) { pixelR[i] = pixelR_buffer[i]; pixelG[i] = pixelG_buffer[i]; pixelB[i] = pixelB_buffer[i]; setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]); } show(); Increment(); } /****************** Helper functions ******************/ void NeoPatterns::SetColor1(uint32_t color) { Color1 = color; } void NeoPatterns::SetColor2(uint32_t color) { Color2 = color; } // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t NeoPatterns::DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void NeoPatterns::ColorSet(uint32_t color) { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, color); } show(); } // Returns the Red component of a 32-bit color uint8_t NeoPatterns::Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t NeoPatterns::Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t NeoPatterns::Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colors are a transition r - g - b - back to r. uint32_t NeoPatterns::Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if (WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } // Convert x y pixel position to matrix position uint8_t NeoPatterns::xyToPos(int x, int y) { if (y % 2 == 0) { return (y * 8 + x); } else { return (y * 8 + (7 - x)); } } // Convert pixel number to actual 8x8 matrix position in a spiral uint8_t NeoPatterns::numToSpiralPos(int num) { int edge = (int)sqrt(numPixels()); int findx = edge - 1; // 7 int findy = 0; int stepsize = edge - 1; // initial value (0..7) int stepnumber = 0; // each "step" should be used twice int count = -1; int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY if (num < edge) { return num; // trivial } for (int i = edge; i <= num; i++) { count++; if (count == stepsize) { count = 0; // Change direction dir++; stepnumber++; if (stepnumber == 2) { stepsize -= 1; stepnumber = 0; } if (dir == 4) { dir = 0; } } switch (dir) { case 0: findx++; break; case 1: findy++; break; case 2: findx--; break; case 3: findy--; break; } } return xyToPos(findx, findy); } uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y) { uint16_t sum = 0; uint8_t count = 0; if (i >= 8) { //up sum += array[i - 8]; count++; } if (i < (64 - 8)) { //down sum += array[i + 8]; count++; } if (i >= 1) { //left sum += array[i - 1]; count++; } if (i < (64 - 1)) { //right sum += array[i + 1]; count++; } return sum / count; }