#include "NeoPatterns.h" #include "config.h" NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) : Adafruit_NeoPixel(pixels, pin, type) { OnComplete = callback; //Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t. pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); } void NeoPatterns::Update() { if ((millis() - lastUpdate) > Interval) // time to update { lastUpdate = millis(); switch (ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case RANDOM_FADE: RandomFadeUpdate(); break; case RANDOM_FADE_SINGLE: RandomFadeSingleUpdate(); break; case SMOOTH: SmoothUpdate(); break; case ICON: IconUpdate(); break; case PLASMA: PlasmaUpdate(); break; case FILL: break; case RANDOM: break; case NONE: break; default: break; } } else { delay(1); } } void NeoPatterns::Increment() { if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps - 1; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } } void NeoPatterns::Reverse() { if (Direction == FORWARD) { Direction = REVERSE; Index = TotalSteps - 1; } else { Direction = FORWARD; Index = 0; } } void NeoPatterns::Stop(uint8_t interval) { Interval = interval; ActivePattern = NONE; } void NeoPatterns::None(uint8_t interval) { Interval = interval; if (ActivePattern != NONE) { clear(); show(); } ActivePattern = NONE; } /****************** Effects ******************/ void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } void NeoPatterns::RainbowCycleUpdate() { for (int i = 0; i < NUMDOTS; i++) { setPixelColorMapped(i, Wheel(((i * 256 / NUMDOTS) + Index) & 255)); } show(); Increment(); } void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = NUMDOTS; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } void NeoPatterns::TheaterChaseUpdate() { for (int i = 0; i < NUMDOTS; i++) { if ((i + Index) % 3 == 0) { setPixelColorMapped(i, Color1); } else { setPixelColorMapped(i, Color2); } } show(); Increment(); } void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = NUMDOTS; Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void NeoPatterns::ColorWipeUpdate() { setPixelColorMapped(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (NUMDOTS - 1) * 2; Color1 = color1; Index = 0; wPos = 0; this->colorful = colorful; this->spiral = spiral; } // Update the Scanner Pattern void NeoPatterns::ScannerUpdate() { if (colorful) { Color1 = Wheel(wPos); if (wPos >= 255) { wPos = 0; } else { wPos++; } } for (int i = 0; i < NUMDOTS; i++) { int finalpos; if (spiral) { finalpos = numToSpiralPos(i); } else { finalpos = i; } if (i == Index) // Scan Pixel to the right { setPixelColorMapped(finalpos, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColorMapped(finalpos, Color1); } else // Fading tail { setPixelColorMapped(finalpos, DimColor(getPixelColorMapped(finalpos))); } } show(); Increment(); } void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void NeoPatterns::FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } void NeoPatterns::RandomFade(uint8_t interval ) { ActivePattern = RANDOM_FADE; Interval = interval; TotalSteps = 255; Index = 0; } void NeoPatterns::RandomFadeUpdate() { ColorSet(Wheel(Index)); Increment(); } void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) { ActivePattern = RANDOM_FADE_SINGLE; Interval = interval; TotalSteps = 255; Index = 0; WheelSpeed = speed; RandomBuffer(); } void NeoPatterns::RandomFadeSingleUpdate() { for (int i = 0; i < NUMDOTS; i++) { pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel setPixelColorMapped(i, Wheel(pixelR_buffer[i])); } show(); Increment(); } void NeoPatterns::RandomBuffer() { for (int i = 0; i < NUMDOTS; i++) { uint32_t c = Wheel(random(0, 256)); pixelR_buffer[i] = (uint8_t)(c >> 16); pixelG_buffer[i] = (uint8_t)(c >> 8); pixelB_buffer[i] = (uint8_t)c; } } void NeoPatterns::Random() { None(); // Stop all other effects ActivePattern = RANDOM; for (uint8_t i = 0; i < NUMDOTS; i++) { setPixelColorMapped(i, Wheel(random(0, 256))); } show(); } void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) { ActivePattern = SMOOTH; Interval = interval; Index = 0; WheelSpeed = wheelSpeed; Smoothing = smoothing; Strength = strength; movingPoint_x = 3; movingPoint_y = 3; // Clear buffer (from previous or different effects) for (int i = 0; i < NUMDOTS; i++) { pixelR_buffer[i] = 0; pixelG_buffer[i] = 0; pixelB_buffer[i] = 0; } } void NeoPatterns::SmoothUpdate() { uint32_t c = Wheel(wPos); wPosSlow += WheelSpeed; wPos = (wPos + (wPosSlow / 10) ) % 255; wPosSlow = wPosSlow % 16; uint8_t r = (uint8_t)(c >> 16); uint8_t g = (uint8_t)(c >> 8); uint8_t b = (uint8_t)c; movingPoint_x = movingPoint_x + WIDTH + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); movingPoint_y = movingPoint_y + HEIGHT + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); if (movingPoint_x < WIDTH) { movingPoint_x = WIDTH - movingPoint_x; } else if (movingPoint_x >= (2*WIDTH)) { //movingPoint_x = 22 - movingPoint_x; //unklar warum 22? fuer WIDTH=8 movingPoint_x = (2*WIDTH) - movingPoint_x; } else { movingPoint_x -= WIDTH; } if (movingPoint_y < HEIGHT) { movingPoint_y = HEIGHT - movingPoint_y; } else if (movingPoint_y >= (2*HEIGHT)) { //movingPoint_y = 22 - movingPoint_y; movingPoint_y = (2*HEIGHT) - movingPoint_y; } else { movingPoint_y -= HEIGHT; } uint8_t startx = movingPoint_x; uint8_t starty = movingPoint_y; for (int i = 0; i < Strength; i++) { movingPoint_x = startx + WIDTH + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); movingPoint_y = starty + HEIGHT + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); if (movingPoint_x < WIDTH) { movingPoint_x = WIDTH - movingPoint_x; } else if (movingPoint_x >= (2*WIDTH)) { movingPoint_x = (2*WIDTH) - movingPoint_x; } else { movingPoint_x -= WIDTH; } if (movingPoint_y < HEIGHT) { movingPoint_y = HEIGHT - movingPoint_y; } else if (movingPoint_y >= (2*HEIGHT)) { movingPoint_y = (2*HEIGHT) - movingPoint_y; } else { movingPoint_y -= HEIGHT; } if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]--; } } movingPoint_x = startx; movingPoint_y = starty; for (int i = 0; i < NUMDOTS; i++) { pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0); pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0); pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0); } for (int i = 0; i < NUMDOTS; i++) { pixelR[i] = pixelR_buffer[i]; pixelG[i] = pixelG_buffer[i]; pixelB[i] = pixelB_buffer[i]; setPixelColorMapped(i, Color(pixelR[i], pixelG[i], pixelB[i])); } show(); } /****************** Icon ******************/ void NeoPatterns::Icon(uint8_t fontchar, String iconcolor, uint8_t interval) { // Save last effect, should be called after completion again SavedPattern = ActivePattern; SavedInterval = Interval; SavedTotalSteps = TotalSteps; SavedIndex = Index; SavedColor1 = Color1; SavedDirection = Direction; SavedPlasmaPhase = PlasmaPhase; SavedPlasmaPhaseIncrement = PlasmaPhaseIncrement; SavedPlasmaColorStretch = PlasmaColorStretch; ActivePattern = ICON; Interval = interval; TotalSteps = 80; Index = 80; Color1 = parseColor(iconcolor); FontChar = fontchar; Direction = REVERSE; } void NeoPatterns::IconUpdate() { for (int i = 0; i < NUMDOTS; i++) { uint64_t mask = 1LL << (uint64_t)i; if ( (font[FontChar]&mask) == 0) { setPixelColorMapped(numToPos(i), Color(0, 0, 0)); //bit is 0 at pos i } else { float _brightness = 1.0 - ( (TotalSteps - Index) * 1.0 / TotalSteps ); uint8_t _r = (uint8_t)(Color1 >> 16); uint8_t _g = (uint8_t)(Color1 >> 8); uint8_t _b = (uint8_t)Color1; setPixelColorMapped(numToPos(i), Color(_r * _brightness, _g * _brightness, _b * _brightness)); //bit is 1 at pos i } } show(); Increment(); } void NeoPatterns::IconComplete() { // Reload last effect ActivePattern = SavedPattern; Interval = SavedInterval; TotalSteps = SavedTotalSteps; Index = SavedIndex; Color1 = SavedColor1; Direction = SavedDirection; PlasmaPhase = SavedPlasmaPhase; PlasmaPhaseIncrement = SavedPlasmaPhaseIncrement; PlasmaColorStretch = SavedPlasmaColorStretch; } // Based upon https://github.com/johncarl81/neopixelplasma void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval) { ActivePattern = PLASMA; Interval = interval; PlasmaPhase = phase; PlasmaPhaseIncrement = phaseIncrement; PlasmaColorStretch = colorStretch; } void NeoPatterns::PlasmaUpdate() { PlasmaPhase += PlasmaPhaseIncrement; int edge = (int)sqrt(numPixels()); // The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve // The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges. // The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion. Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) }; Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) }; Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)}; byte row, col; // For each row... for ( row = 0; row < edge; row++ ) { float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly. // For each column... for ( col = 0; col < edge; col++ ) { float col_f = float(col); // Optimization. // Calculate the distance between this LED, and p1. Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED. float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y ); // Calculate the distance between this LED, and p2. Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED. float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y ); // Calculate the distance between this LED, and p3. Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED. float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y ); // Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc... // You can use a cos() for slightly different shading, or experiment with other functions. Go crazy! float color_1 = distance1; // range: 0.0...1.0 float color_2 = distance2; float color_3 = distance3; float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5; // Square the color_f value to weight it towards 0. The image will be darker and have higher contrast. color_1 *= color_1 * color_4; color_2 *= color_2 * color_4; color_3 *= color_3 * color_4; color_4 *= color_4; // Scale the color up to 0..7 . Max brightness is 7. //strip.setPixelColorMapped(col + (edge * row), strip.Color(color_4, 0, 0) ); setPixelColorMapped(xyToPos(row, col), Color(color_1, color_2, color_3)); } } show(); } /****************** Helper functions ******************/ void NeoPatterns::SetColor1(uint32_t color) { Color1 = color; } void NeoPatterns::SetColor2(uint32_t color) { Color2 = color; } // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t NeoPatterns::DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void NeoPatterns::ColorSet(uint32_t color) { for (int i = 0; i < NUMDOTS; i++) { setPixelColorMapped(i, color); } show(); } void NeoPatterns::ColorSetParameters(String parameters) { None(); ActivePattern = FILL; ColorSet(parseColor(parameters)); } // Returns the Red component of a 32-bit color uint8_t NeoPatterns::Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t NeoPatterns::Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t NeoPatterns::Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colors are a transition r - g - b - back to r. uint32_t NeoPatterns::Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if (WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } // Convert x y pixel position to matrix position #ifdef LEDBOX3X6 uint8_t ledbox3x6_mapping[6][3] = { {0,1,2}, {5,4,3}, {6,7,8}, {15,14,9}, {16,13,10}, {17,12,11} }; uint8_t NeoPatterns::xyToPos(int x, int y) { return ledbox3x6_mapping[x][y]; } #else uint8_t NeoPatterns::xyToPos(int x, int y) { if (y % 2 == 0) { return (y * WIDTH + x); } else { return (y * WIDTH + (WIDTH-1 - x)); } } #endif //convert pixel number to actual 8x8 matrix position uint8_t NeoPatterns::numToPos(int num) { int x = num % WIDTH; int y = num / HEIGHT; return xyToPos(x, y); } // Convert pixel number to actual 8x8 matrix position in a spiral uint8_t NeoPatterns::numToSpiralPos(int num) { int edge = (int)sqrt(numPixels()); int findx = edge - 1; // 7 int findy = 0; int stepsize = edge - 1; // initial value (0..7) int stepnumber = 0; // each "step" should be used twice int count = -1; int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY if (num < edge) { return num; // trivial } for (int i = edge; i <= num; i++) { count++; if (count == stepsize) { count = 0; // Change direction dir++; stepnumber++; if (stepnumber == 2) { stepsize -= 1; stepnumber = 0; } if (dir == 4) { dir = 0; } } switch (dir) { case 0: findx++; break; case 1: findy++; break; case 2: findx--; break; case 3: findy--; break; } } return xyToPos(findx, findy); } uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y) { // TODO: This currently works only with 8x8 (64 pixel)! uint16_t sum = 0; uint8_t count = 0; if (i >= 8) { //up sum += array[i - 8]; count++; } if (i < (64 - 8)) { //down sum += array[i + 8]; count++; } if (i >= 1) { //left sum += array[i - 1]; count++; } if (i < (64 - 1)) { //right sum += array[i + 1]; count++; } return sum / count; } uint32_t NeoPatterns::parseColor(String value) { if (value.charAt(0) == '#') { //solid fill String color = value.substring(1); int number = (int) strtol( &color[0], NULL, 16); // Split them up into r, g, b values int r = number >> 16; int g = number >> 8 & 0xFF; int b = number & 0xFF; return Color(r, g, b); } return 0; } void NeoPatterns::setPixelColorMapped(uint8_t i, uint32_t c){ #ifdef LEDBOX3X6 setPixelColor(i*2,c); setPixelColor(i*2+1,c); #else setPixelColor(i,c); #endif } uint32_t NeoPatterns::getPixelColorMapped(uint8_t i){ #ifdef LEDBOX3X6 return getPixelColor(i*2); #else return getPixelColor(i); #endif }