/* ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file CANv1/hal_can_lld.c * @brief STM32 CAN subsystem low level driver source. * * @addtogroup CAN * @{ */ #include "hal.h" #if HAL_USE_CAN || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /* * Addressing differences in the headers, they seem unable to agree on names. */ #if STM32_CAN_USE_CAN1 #if !defined(CAN1) #define CAN1 CAN #endif #endif /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief CAN1 driver identifier.*/ #if STM32_CAN_USE_CAN1 || defined(__DOXYGEN__) CANDriver CAND1; #endif /** @brief CAN2 driver identifier.*/ #if STM32_CAN_USE_CAN2 || defined(__DOXYGEN__) CANDriver CAND2; #endif /** @brief CAN3 driver identifier.*/ #if STM32_CAN_USE_CAN3 || defined(__DOXYGEN__) CANDriver CAND3; #endif /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Programs the filters of CAN 1 and CAN 2. * * @param[in] canp pointer to the @p CANDriver object * @param[in] can2sb number of the first filter assigned to CAN2 * @param[in] num number of entries in the filters array, if zero then * a default filter is programmed * @param[in] cfp pointer to the filters array, can be @p NULL if * (num == 0) * * @notapi */ static void can_lld_set_filters(CANDriver* canp, uint32_t can2sb, uint32_t num, const CANFilter *cfp) { #if STM32_CAN_USE_CAN2 if(canp == &CAND2) { /* Set handle to CAN1, because CAN1 manages the filters of CAN2.*/ canp = &CAND1; } #endif /* Temporarily enabling CAN clock.*/ #if STM32_CAN_USE_CAN1 if(canp == &CAND1) { rccEnableCAN1(FALSE); /* Filters initialization.*/ canp->can->FMR = (canp->can->FMR & 0xFFFF0000) | CAN_FMR_FINIT; canp->can->FMR = (canp->can->FMR & 0xFFFF0000) | (can2sb << 8) | CAN_FMR_FINIT; } #endif #if STM32_CAN_USE_CAN3 if(canp == &CAND3) { rccEnableCAN3(FALSE); /* Filters initialization.*/ canp->can->FMR = (canp->can->FMR & 0xFFFF0000) | CAN_FMR_FINIT; } #endif if (num > 0) { uint32_t i, fmask; /* All filters cleared.*/ canp->can->FA1R = 0; canp->can->FM1R = 0; canp->can->FS1R = 0; canp->can->FFA1R = 0; #if STM32_CAN_USE_CAN1 if(canp == &CAND1) { for (i = 0; i < STM32_CAN_MAX_FILTERS; i++) { canp->can->sFilterRegister[i].FR1 = 0; canp->can->sFilterRegister[i].FR2 = 0; } } #endif #if STM32_CAN_USE_CAN3 if(canp == &CAND3) { for (i = 0; i < STM32_CAN3_MAX_FILTERS; i++) { canp->can->sFilterRegister[i].FR1 = 0; canp->can->sFilterRegister[i].FR2 = 0; } } #endif /* Scanning the filters array.*/ for (i = 0; i < num; i++) { fmask = 1 << cfp->filter; if (cfp->mode) canp->can->FM1R |= fmask; if (cfp->scale) canp->can->FS1R |= fmask; if (cfp->assignment) canp->can->FFA1R |= fmask; canp->can->sFilterRegister[cfp->filter].FR1 = cfp->register1; canp->can->sFilterRegister[cfp->filter].FR2 = cfp->register2; canp->can->FA1R |= fmask; cfp++; } } else { /* Setting up a single default filter that enables everything for both CANs.*/ canp->can->sFilterRegister[0].FR1 = 0; canp->can->sFilterRegister[0].FR2 = 0; #if STM32_CAN_USE_CAN2 if(canp == &CAND1) { canp->can->sFilterRegister[can2sb].FR1 = 0; canp->can->sFilterRegister[can2sb].FR2 = 0; } #endif canp->can->FM1R = 0; canp->can->FFA1R = 0; canp->can->FS1R = 1; canp->can->FA1R = 1; #if STM32_CAN_USE_CAN2 if(canp == &CAND1) { canp->can->FS1R |= 1 << can2sb; canp->can->FA1R |= 1 << can2sb; } #endif } canp->can->FMR &= ~CAN_FMR_FINIT; /* Clock disabled, it will be enabled again in can_lld_start().*/ /* Temporarily enabling CAN clock.*/ #if STM32_CAN_USE_CAN1 if(canp == &CAND1) { rccDisableCAN1(FALSE); } #endif #if STM32_CAN_USE_CAN3 if(canp == &CAND3) { rccDisableCAN3(FALSE); } #endif } /** * @brief Common TX ISR handler. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ static void can_lld_tx_handler(CANDriver *canp) { uint32_t tsr; eventflags_t flags; /* Clearing IRQ sources.*/ tsr = canp->can->TSR; canp->can->TSR = tsr; /* Flags to be signaled through the TX event source.*/ flags = 0U; /* Checking mailbox 0.*/ if ((tsr & CAN_TSR_RQCP0) != 0U) { if ((tsr & (CAN_TSR_ALST0 | CAN_TSR_TERR0)) != 0U) { flags |= CAN_MAILBOX_TO_MASK(1U) << 16U; } else { flags |= CAN_MAILBOX_TO_MASK(1U); } } /* Checking mailbox 1.*/ if ((tsr & CAN_TSR_RQCP1) != 0U) { if ((tsr & (CAN_TSR_ALST1 | CAN_TSR_TERR1)) != 0U) { flags |= CAN_MAILBOX_TO_MASK(2U) << 16U; } else { flags |= CAN_MAILBOX_TO_MASK(2U); } } /* Checking mailbox 2.*/ if ((tsr & CAN_TSR_RQCP2) != 0U) { if ((tsr & (CAN_TSR_ALST2 | CAN_TSR_TERR2)) != 0U) { flags |= CAN_MAILBOX_TO_MASK(3U) << 16U; } else { flags |= CAN_MAILBOX_TO_MASK(3U); } } /* Signaling flags and waking up threads waiting for a transmission slot.*/ osalSysLockFromISR(); osalThreadDequeueAllI(&canp->txqueue, MSG_OK); osalEventBroadcastFlagsI(&canp->txempty_event, flags); osalSysUnlockFromISR(); } /** * @brief Common RX0 ISR handler. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ static void can_lld_rx0_handler(CANDriver *canp) { uint32_t rf0r; rf0r = canp->can->RF0R; if ((rf0r & CAN_RF0R_FMP0) > 0) { /* No more receive events until the queue 0 has been emptied.*/ canp->can->IER &= ~CAN_IER_FMPIE0; osalSysLockFromISR(); osalThreadDequeueAllI(&canp->rxqueue, MSG_OK); osalEventBroadcastFlagsI(&canp->rxfull_event, CAN_MAILBOX_TO_MASK(1U)); osalSysUnlockFromISR(); } if ((rf0r & CAN_RF0R_FOVR0) > 0) { /* Overflow events handling.*/ canp->can->RF0R = CAN_RF0R_FOVR0; osalSysLockFromISR(); osalEventBroadcastFlagsI(&canp->error_event, CAN_OVERFLOW_ERROR); osalSysUnlockFromISR(); } } /** * @brief Common RX1 ISR handler. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ static void can_lld_rx1_handler(CANDriver *canp) { uint32_t rf1r; rf1r = canp->can->RF1R; if ((rf1r & CAN_RF1R_FMP1) > 0) { /* No more receive events until the queue 0 has been emptied.*/ canp->can->IER &= ~CAN_IER_FMPIE1; osalSysLockFromISR(); osalThreadDequeueAllI(&canp->rxqueue, MSG_OK); osalEventBroadcastFlagsI(&canp->rxfull_event, CAN_MAILBOX_TO_MASK(2U)); osalSysUnlockFromISR(); } if ((rf1r & CAN_RF1R_FOVR1) > 0) { /* Overflow events handling.*/ canp->can->RF1R = CAN_RF1R_FOVR1; osalSysLockFromISR(); osalEventBroadcastFlagsI(&canp->error_event, CAN_OVERFLOW_ERROR); osalSysUnlockFromISR(); } } /** * @brief Common SCE ISR handler. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ static void can_lld_sce_handler(CANDriver *canp) { uint32_t msr; /* Clearing IRQ sources.*/ msr = canp->can->MSR; canp->can->MSR = msr; /* Wakeup event.*/ #if CAN_USE_SLEEP_MODE if (msr & CAN_MSR_WKUI) { canp->state = CAN_READY; canp->can->MCR &= ~CAN_MCR_SLEEP; osalSysLockFromISR(); osalEventBroadcastFlagsI(&canp->wakeup_event, 0); osalSysUnlockFromISR(); } #endif /* CAN_USE_SLEEP_MODE */ /* Error event.*/ if (msr & CAN_MSR_ERRI) { eventflags_t flags; uint32_t esr = canp->can->ESR; #if STM32_CAN_REPORT_ALL_ERRORS flags = (eventflags_t)(esr & 7); if ((esr & CAN_ESR_LEC) > 0) flags |= CAN_FRAMING_ERROR; #else flags = 0; #endif osalSysLockFromISR(); /* The content of the ESR register is copied unchanged in the upper half word of the listener flags mask.*/ osalEventBroadcastFlagsI(&canp->error_event, flags | (eventflags_t)(esr << 16U)); osalSysUnlockFromISR(); } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_CAN_USE_CAN1 || defined(__DOXYGEN__) #if defined(STM32_CAN1_UNIFIED_HANDLER) /** * @brief CAN1 unified interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN1_UNIFIED_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND1); can_lld_rx0_handler(&CAND1); can_lld_rx1_handler(&CAND1); can_lld_sce_handler(&CAND1); OSAL_IRQ_EPILOGUE(); } #else /* !defined(STM32_CAN1_UNIFIED_HANDLER) */ #if !defined(STM32_CAN1_TX_HANDLER) #error "STM32_CAN1_TX_HANDLER not defined" #endif #if !defined(STM32_CAN1_RX0_HANDLER) #error "STM32_CAN1_RX0_HANDLER not defined" #endif #if !defined(STM32_CAN1_RX1_HANDLER) #error "STM32_CAN1_RX1_HANDLER not defined" #endif #if !defined(STM32_CAN1_SCE_HANDLER) #error "STM32_CAN1_SCE_HANDLER not defined" #endif /** * @brief CAN1 TX interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN1_TX_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND1); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN1 RX0 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN1_RX0_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx0_handler(&CAND1); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN1 RX1 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN1_RX1_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx1_handler(&CAND1); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN1 SCE interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN1_SCE_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_sce_handler(&CAND1); OSAL_IRQ_EPILOGUE(); } #endif /* !defined(STM32_CAN1_UNIFIED_HANDLER) */ #endif /* STM32_CAN_USE_CAN1 */ #if STM32_CAN_USE_CAN2 || defined(__DOXYGEN__) #if defined(STM32_CAN2_UNIFIED_HANDLER) /** * @brief CAN1 unified interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN2_UNIFIED_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND2); can_lld_rx0_handler(&CAND2); can_lld_rx1_handler(&CAND2); can_lld_sce_handler(&CAND2); OSAL_IRQ_EPILOGUE(); } #else /* !defined(STM32_CAN2_UNIFIED_HANDLER) */ #if !defined(STM32_CAN1_TX_HANDLER) #error "STM32_CAN1_TX_HANDLER not defined" #endif #if !defined(STM32_CAN1_RX0_HANDLER) #error "STM32_CAN1_RX0_HANDLER not defined" #endif #if !defined(STM32_CAN1_RX1_HANDLER) #error "STM32_CAN1_RX1_HANDLER not defined" #endif #if !defined(STM32_CAN1_SCE_HANDLER) #error "STM32_CAN1_SCE_HANDLER not defined" #endif /** * @brief CAN2 TX interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN2_TX_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND2); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN2 RX0 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN2_RX0_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx0_handler(&CAND2); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN2 RX1 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN2_RX1_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx1_handler(&CAND2); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN2 SCE interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN2_SCE_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_sce_handler(&CAND2); OSAL_IRQ_EPILOGUE(); } #endif /* !defined(STM32_CAN2_UNIFIED_HANDLER) */ #endif /* STM32_CAN_USE_CAN2 */ #if STM32_CAN_USE_CAN3 || defined(__DOXYGEN__) #if defined(STM32_CAN3_UNIFIED_HANDLER) /** * @brief CAN1 unified interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN3_UNIFIED_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND3); can_lld_rx0_handler(&CAND3); can_lld_rx1_handler(&CAND3); can_lld_sce_handler(&CAND3); OSAL_IRQ_EPILOGUE(); } #else /* !defined(STM32_CAN3_UNIFIED_HANDLER) */ #if !defined(STM32_CAN3_TX_HANDLER) #error "STM32_CAN3_TX_HANDLER not defined" #endif #if !defined(STM32_CAN3_RX0_HANDLER) #error "STM32_CAN3_RX0_HANDLER not defined" #endif #if !defined(STM32_CAN3_RX1_HANDLER) #error "STM32_CAN3_RX1_HANDLER not defined" #endif #if !defined(STM32_CAN3_SCE_HANDLER) #error "STM32_CAN3_SCE_HANDLER not defined" #endif /** * @brief CAN3 TX interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN3_TX_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_tx_handler(&CAND3); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN3 RX0 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN3_RX0_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx0_handler(&CAND3); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN1 RX3 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN3_RX1_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_rx1_handler(&CAND3); OSAL_IRQ_EPILOGUE(); } /** * @brief CAN1 SCE interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_CAN3_SCE_HANDLER) { OSAL_IRQ_PROLOGUE(); can_lld_sce_handler(&CAND3); OSAL_IRQ_EPILOGUE(); } #endif /* !defined(STM32_CAN1_UNIFIED_HANDLER) */ #endif /* STM32_CAN_USE_CAN1 */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level CAN driver initialization. * * @notapi */ void can_lld_init(void) { #if STM32_CAN_USE_CAN1 /* Driver initialization.*/ canObjectInit(&CAND1); CAND1.can = CAN1; #endif #if STM32_CAN_USE_CAN2 /* Driver initialization.*/ canObjectInit(&CAND2); CAND2.can = CAN2; #endif #if STM32_CAN_USE_CAN3 /* Driver initialization.*/ canObjectInit(&CAND3); CAND3.can = CAN3; #endif /* Filters initialization.*/ #if STM32_HAS_CAN2 can_lld_set_filters(&CAND1, STM32_CAN_MAX_FILTERS / 2, 0, NULL); #else can_lld_set_filters(&CAND1, STM32_CAN_MAX_FILTERS, 0, NULL); #endif #if STM32_HAS_CAN3 #if STM32_CAN_USE_CAN3 can_lld_set_filters(&CAND3, STM32_CAN3_MAX_FILTERS, 0, NULL); #endif #endif } /** * @brief Configures and activates the CAN peripheral. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ void can_lld_start(CANDriver *canp) { /* Clock activation.*/ #if STM32_CAN_USE_CAN1 if (&CAND1 == canp) { #if defined(STM32_CAN1_UNIFIED_NUMBER) nvicEnableVector(STM32_CAN1_UNIFIED_NUMBER, STM32_CAN_CAN1_IRQ_PRIORITY); #else nvicEnableVector(STM32_CAN1_TX_NUMBER, STM32_CAN_CAN1_IRQ_PRIORITY); nvicEnableVector(STM32_CAN1_RX0_NUMBER, STM32_CAN_CAN1_IRQ_PRIORITY); nvicEnableVector(STM32_CAN1_RX1_NUMBER, STM32_CAN_CAN1_IRQ_PRIORITY); nvicEnableVector(STM32_CAN1_SCE_NUMBER, STM32_CAN_CAN1_IRQ_PRIORITY); #endif rccEnableCAN1(FALSE); } #endif #if STM32_CAN_USE_CAN2 if (&CAND2 == canp) { osalDbgAssert(CAND1.state != CAN_STOP, "CAN1 must be started"); #if defined(STM32_CAN2_UNIFIED_NUMBER) nvicEnableVector(STM32_CAN2_UNIFIED_NUMBER, STM32_CAN_CAN2_IRQ_PRIORITY); #else nvicEnableVector(STM32_CAN2_TX_NUMBER, STM32_CAN_CAN2_IRQ_PRIORITY); nvicEnableVector(STM32_CAN2_RX0_NUMBER, STM32_CAN_CAN2_IRQ_PRIORITY); nvicEnableVector(STM32_CAN2_RX1_NUMBER, STM32_CAN_CAN2_IRQ_PRIORITY); nvicEnableVector(STM32_CAN2_SCE_NUMBER, STM32_CAN_CAN2_IRQ_PRIORITY); #endif rccEnableCAN2(FALSE); } #endif #if STM32_CAN_USE_CAN3 if (&CAND3 == canp) { #if defined(STM32_CAN3_UNIFIED_NUMBER) nvicEnableVector(STM32_CAN3_UNIFIED_NUMBER, STM32_CAN_CAN3_IRQ_PRIORITY); #else nvicEnableVector(STM32_CAN3_TX_NUMBER, STM32_CAN_CAN3_IRQ_PRIORITY); nvicEnableVector(STM32_CAN3_RX0_NUMBER, STM32_CAN_CAN3_IRQ_PRIORITY); nvicEnableVector(STM32_CAN3_RX1_NUMBER, STM32_CAN_CAN3_IRQ_PRIORITY); nvicEnableVector(STM32_CAN3_SCE_NUMBER, STM32_CAN_CAN3_IRQ_PRIORITY); #endif rccEnableCAN3(FALSE); } #endif /* Configuring CAN. */ canp->can->MCR = CAN_MCR_INRQ; while ((canp->can->MSR & CAN_MSR_INAK) == 0) osalThreadSleepS(1); canp->can->BTR = canp->config->btr; canp->can->MCR = canp->config->mcr; /* Interrupt sources initialization.*/ #if STM32_CAN_REPORT_ALL_ERRORS canp->can->IER = CAN_IER_TMEIE | CAN_IER_FMPIE0 | CAN_IER_FMPIE1 | CAN_IER_WKUIE | CAN_IER_ERRIE | CAN_IER_LECIE | CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE | CAN_IER_FOVIE0 | CAN_IER_FOVIE1; #else canp->can->IER = CAN_IER_TMEIE | CAN_IER_FMPIE0 | CAN_IER_FMPIE1 | CAN_IER_WKUIE | CAN_IER_ERRIE | CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE | CAN_IER_FOVIE0 | CAN_IER_FOVIE1; #endif } /** * @brief Deactivates the CAN peripheral. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ void can_lld_stop(CANDriver *canp) { /* If in ready state then disables the CAN peripheral.*/ if (canp->state == CAN_READY) { #if STM32_CAN_USE_CAN1 if (&CAND1 == canp) { #if STM32_CAN_USE_CAN2 osalDbgAssert(CAND2.state == CAN_STOP, "CAN2 must be stopped"); #endif CAN1->MCR = 0x00010002; /* Register reset value. */ CAN1->IER = 0x00000000; /* All sources disabled. */ #if defined(STM32_CAN1_UNIFIED_NUMBER) nvicDisableVector(STM32_CAN1_UNIFIED_NUMBER); #else nvicDisableVector(STM32_CAN1_TX_NUMBER); nvicDisableVector(STM32_CAN1_RX0_NUMBER); nvicDisableVector(STM32_CAN1_RX1_NUMBER); nvicDisableVector(STM32_CAN1_SCE_NUMBER); #endif rccDisableCAN1(FALSE); } #endif #if STM32_CAN_USE_CAN2 if (&CAND2 == canp) { CAN2->MCR = 0x00010002; /* Register reset value. */ CAN2->IER = 0x00000000; /* All sources disabled. */ #if defined(STM32_CAN2_UNIFIED_NUMBER) nvicDisableVector(STM32_CAN2_UNIFIED_NUMBER); #else nvicDisableVector(STM32_CAN2_TX_NUMBER); nvicDisableVector(STM32_CAN2_RX0_NUMBER); nvicDisableVector(STM32_CAN2_RX1_NUMBER); nvicDisableVector(STM32_CAN2_SCE_NUMBER); #endif rccDisableCAN2(FALSE); } #endif #if STM32_CAN_USE_CAN3 if (&CAND3 == canp) { CAN3->MCR = 0x00010002; /* Register reset value. */ CAN3->IER = 0x00000000; /* All sources disabled. */ #if defined(STM32_CAN3_UNIFIED_NUMBER) nvicDisableVector(STM32_CAN3_UNIFIED_NUMBER); #else nvicDisableVector(STM32_CAN3_TX_NUMBER); nvicDisableVector(STM32_CAN3_RX0_NUMBER); nvicDisableVector(STM32_CAN3_RX1_NUMBER); nvicDisableVector(STM32_CAN3_SCE_NUMBER); #endif rccDisableCAN3(FALSE); } #endif } } /** * @brief Determines whether a frame can be transmitted. * * @param[in] canp pointer to the @p CANDriver object * @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox * * @return The queue space availability. * @retval FALSE no space in the transmit queue. * @retval TRUE transmit slot available. * * @notapi */ bool can_lld_is_tx_empty(CANDriver *canp, canmbx_t mailbox) { switch (mailbox) { case CAN_ANY_MAILBOX: return (canp->can->TSR & CAN_TSR_TME) != 0; case 1: return (canp->can->TSR & CAN_TSR_TME0) != 0; case 2: return (canp->can->TSR & CAN_TSR_TME1) != 0; case 3: return (canp->can->TSR & CAN_TSR_TME2) != 0; default: return FALSE; } } /** * @brief Inserts a frame into the transmit queue. * * @param[in] canp pointer to the @p CANDriver object * @param[in] ctfp pointer to the CAN frame to be transmitted * @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox * * @notapi */ void can_lld_transmit(CANDriver *canp, canmbx_t mailbox, const CANTxFrame *ctfp) { uint32_t tir; CAN_TxMailBox_TypeDef *tmbp; /* Pointer to a free transmission mailbox.*/ switch (mailbox) { case CAN_ANY_MAILBOX: tmbp = &canp->can->sTxMailBox[(canp->can->TSR & CAN_TSR_CODE) >> 24]; break; case 1: tmbp = &canp->can->sTxMailBox[0]; break; case 2: tmbp = &canp->can->sTxMailBox[1]; break; case 3: tmbp = &canp->can->sTxMailBox[2]; break; default: return; } /* Preparing the message.*/ if (ctfp->IDE) tir = ((uint32_t)ctfp->EID << 3) | ((uint32_t)ctfp->RTR << 1) | CAN_TI0R_IDE; else tir = ((uint32_t)ctfp->SID << 21) | ((uint32_t)ctfp->RTR << 1); tmbp->TDTR = ctfp->DLC; tmbp->TDLR = ctfp->data32[0]; tmbp->TDHR = ctfp->data32[1]; tmbp->TIR = tir | CAN_TI0R_TXRQ; } /** * @brief Determines whether a frame has been received. * * @param[in] canp pointer to the @p CANDriver object * @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox * * @return The queue space availability. * @retval FALSE no space in the transmit queue. * @retval TRUE transmit slot available. * * @notapi */ bool can_lld_is_rx_nonempty(CANDriver *canp, canmbx_t mailbox) { switch (mailbox) { case CAN_ANY_MAILBOX: return ((canp->can->RF0R & CAN_RF0R_FMP0) != 0 || (canp->can->RF1R & CAN_RF1R_FMP1) != 0); case 1: return (canp->can->RF0R & CAN_RF0R_FMP0) != 0; case 2: return (canp->can->RF1R & CAN_RF1R_FMP1) != 0; default: return FALSE; } } /** * @brief Receives a frame from the input queue. * * @param[in] canp pointer to the @p CANDriver object * @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox * @param[out] crfp pointer to the buffer where the CAN frame is copied * * @notapi */ void can_lld_receive(CANDriver *canp, canmbx_t mailbox, CANRxFrame *crfp) { uint32_t rir, rdtr; if (mailbox == CAN_ANY_MAILBOX) { if ((canp->can->RF0R & CAN_RF0R_FMP0) != 0) mailbox = 1; else if ((canp->can->RF1R & CAN_RF1R_FMP1) != 0) mailbox = 2; else { /* Should not happen, do nothing.*/ return; } } switch (mailbox) { case 1: /* Fetches the message.*/ rir = canp->can->sFIFOMailBox[0].RIR; rdtr = canp->can->sFIFOMailBox[0].RDTR; crfp->data32[0] = canp->can->sFIFOMailBox[0].RDLR; crfp->data32[1] = canp->can->sFIFOMailBox[0].RDHR; /* Releases the mailbox.*/ canp->can->RF0R = CAN_RF0R_RFOM0; /* If the queue is empty re-enables the interrupt in order to generate events again.*/ if ((canp->can->RF0R & CAN_RF0R_FMP0) == 0) canp->can->IER |= CAN_IER_FMPIE0; break; case 2: /* Fetches the message.*/ rir = canp->can->sFIFOMailBox[1].RIR; rdtr = canp->can->sFIFOMailBox[1].RDTR; crfp->data32[0] = canp->can->sFIFOMailBox[1].RDLR; crfp->data32[1] = canp->can->sFIFOMailBox[1].RDHR; /* Releases the mailbox.*/ canp->can->RF1R = CAN_RF1R_RFOM1; /* If the queue is empty re-enables the interrupt in order to generate events again.*/ if ((canp->can->RF1R & CAN_RF1R_FMP1) == 0) canp->can->IER |= CAN_IER_FMPIE1; break; default: /* Should not happen, do nothing.*/ return; } /* Decodes the various fields in the RX frame.*/ crfp->RTR = (rir & CAN_RI0R_RTR) >> 1; crfp->IDE = (rir & CAN_RI0R_IDE) >> 2; if (crfp->IDE) crfp->EID = rir >> 3; else crfp->SID = rir >> 21; crfp->DLC = rdtr & CAN_RDT0R_DLC; crfp->FMI = (uint8_t)(rdtr >> 8); crfp->TIME = (uint16_t)(rdtr >> 16); } #if CAN_USE_SLEEP_MODE || defined(__DOXYGEN__) /** * @brief Enters the sleep mode. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ void can_lld_sleep(CANDriver *canp) { canp->can->MCR |= CAN_MCR_SLEEP; } /** * @brief Enforces leaving the sleep mode. * * @param[in] canp pointer to the @p CANDriver object * * @notapi */ void can_lld_wakeup(CANDriver *canp) { canp->can->MCR &= ~CAN_MCR_SLEEP; } #endif /* CAN_USE_SLEEP_MODE */ /** * @brief Programs the filters. * @note This is an STM32-specific API. * * @param[in] canp pointer to the @p CANDriver object * @param[in] can2sb number of the first filter assigned to CAN2 * @param[in] num number of entries in the filters array, if zero then * a default filter is programmed * @param[in] cfp pointer to the filters array, can be @p NULL if * (num == 0) * * @api */ void canSTM32SetFilters(CANDriver *canp, uint32_t can2sb, uint32_t num, const CANFilter *cfp) { #if STM32_CAN_USE_CAN2 osalDbgCheck((can2sb <= STM32_CAN_MAX_FILTERS) && (num <= STM32_CAN_MAX_FILTERS)); #endif #if STM32_CAN_USE_CAN1 osalDbgAssert(CAND1.state == CAN_STOP, "invalid state"); #endif #if STM32_CAN_USE_CAN2 osalDbgAssert(CAND2.state == CAN_STOP, "invalid state"); #endif #if STM32_CAN_USE_CAN3 osalDbgAssert(CAND3.state == CAN_STOP, "invalid state"); #endif #if STM32_CAN_USE_CAN1 if(canp == &CAND1) { can_lld_set_filters(canp, can2sb, num, cfp); } #endif #if STM32_CAN_USE_CAN3 if(canp == &CAND3) { can_lld_set_filters(canp, can2sb, num, cfp); } #endif } #endif /* HAL_USE_CAN */ /** @} */