#include "../config.h" #include "../makros.h" #include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include "borg_hw.h" /* // those macros get defined via menuconfig, now // 16 columns total directly controlled, therefore 2 ports #define COLPORT1 PORTC #define COLDDR1 DDRC #define COLPORT2 PORTA #define COLDDR2 DDRA // the other port controls the shift registers #define ROWPORT PORTD #define ROWDDR DDRD // both clock and reset are connected to each shift register // reset pin is negated #define PIN_MCLR PD4 #define PIN_CLK PD6 // these are the individual data input pins for the shift registers #define PIN_DATA PD7 */ //#define COLDDR1 DDR(COLPORT1) //#define COLDDR2 DDR(COLPORT2) //#define ROWDDR DDR(ROWPORT) //#define DATAPORT PORTC #define DATADDR DDR(DATAPORT) //#define ADDRPORT PORTA #define ADDRDDR DDR(ADDRPORT) //#define CTRLPORT PORTD #define CTRLDDR DDR(CTRLPORT) #define RDIMDDR DDR(RDIMPORT) //#define BIT_CS0 2 //#define BIT_CS1 3 //#define BIT_CS2 4 //#define BIT_CS3 5 //#define BIT_RW 6 // buffer which holds the currently shown frame unsigned char pixmap[NUMPLANE][NUM_ROWS][LINEBYTES]; inline void pd1165_write(uint8_t addr, uint8_t data) { ADDRPORT = (ADDRPORT & 0xf0) | addr; DATAPORT = data; /* switch (display) { case 0: CTRLPORT &= ~((1 << BIT_CS0) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS0)); break; case 1: CTRLPORT &= ~((1 << BIT_CS1) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS1)); break; case 2: CTRLPORT &= ~((1 << BIT_CS2) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS2)); break; case 3: CTRLPORT &= ~((1 << BIT_CS3) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS3)); break; } */ } /* // display a row inline void rowshow(unsigned char row, unsigned char plane) { int addr = row; // depending on the currently drawn plane, display the row for a specific // amount of time switch (plane) { case 0: OCR0 = 3; break; case 1: OCR0 = 4; break; case 2: OCR0 = 22; } uint8_t tmp, tmp1; // output data of current row to the column drivers #ifndef INTERLACED_ROWS tmp = pixmap[plane][row][0]; tmp1 = pixmap[plane][row][1]; #else row = (row>>1) + ((row & 0x01)?8:0 ); tmp = pixmap[plane][row][0]; tmp1 = pixmap[plane][row][1]; #endif #ifdef REVERSE_COLS tmp = (tmp >> 4) | (tmp << 4); tmp = ((tmp & 0xcc) >> 2) | ((tmp & 0x33)<< 2); //0xcc = 11001100, 0x33 = 00110011 tmp = ((tmp & 0xaa) >> 1) | ((tmp & 0x55)<< 1); //0xaa = 10101010, 0x55 = 1010101 //COLPORT2 = tmp; tmp = tmp1; tmp = (tmp >> 4) | (tmp << 4); tmp = ((tmp & 0xcc) >> 2) | ((tmp & 0x33) << 2); //0xcc = 11001100, 0x33 = 00110011 tmp = ((tmp & 0xaa) >> 1) | ((tmp & 0x55) << 1); //0xaa = 10101010, 0x55 = 1010101 //COLPORT1 = tmp; #else #ifdef INTERLACED_COLS static uint8_t interlace_table[16] = { 0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15, 0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55 }; //COLPORT1 = interlace_table[tmp&0x0f] | (interlace_table[tmp1&0x0f]<<1); tmp>>=4; tmp1>>=4; //COLPORT2 = interlace_table[tmp] | (interlace_table[tmp1]<<1); #else //COLPORT1 = tmp; //COLPORT2 = tmp1; pd1165_write(row, tmp); #endif #endif } */ // depending on the plane this interrupt gets triggered at 50 kHz, 31.25 kHz or // 12.5 kHz SIGNAL(SIG_OUTPUT_COMPARE0) { static unsigned char plane = 0; unsigned char row = 0; // reset watchdog wdt_reset(); // determine button status of the joystick readButtons(); for (row = 0; row < 8; row++) { pd1165_write(row, pixmap[plane][row][0]); CTRLPORT &= ~((1 << BIT_CS3) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS3)); pd1165_write(row, pixmap[plane][row][1]); CTRLPORT &= ~((1 << BIT_CS2) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS2)); //pd1165_write(0, row, pixmap[plane][row][0]); //pd1165_write(1, row, pixmap[plane][row][1]); } for (row = 8; row < NUM_ROWS; row++) { pd1165_write(row - 8, pixmap[plane][row][0]); CTRLPORT &= ~((1 << BIT_CS0) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS0)); pd1165_write(row - 8, pixmap[plane][row][1]); CTRLPORT &= ~((1 << BIT_CS1) | (1 << BIT_RW)); CTRLPORT |= ((1 << BIT_CS1)); } // depending on the currently drawn plane, display the row for a specific // amount of time switch (plane) { case 0: OCR0 = 3; break; case 1: OCR0 = 4; break; case 2: OCR0 = 22; break; } //increment both row and plane if (++plane == NUMPLANE) { plane = 0; } } void timer0_off() { cli(); TCCR0 = 0x00; sei(); } // initialize timer which triggers the interrupt void timer0_on() { /* TCCR0: FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 CS02 CS01 CS00 0 0 0 stop 0 0 1 clk 0 1 0 clk/8 0 1 1 clk/64 1 0 0 clk/256 1 0 1 clk/1024 */ TCCR0 = 0x0D; // CTC Mode, clk/64 TCNT0 = 0; // reset timer OCR0 = 20; // compare with this value TIMSK = 0x02; // compare match Interrupt on } void timer2_on() { /* TCCR2: FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 CS02 CS01 CS00 0 0 0 stop 0 0 1 clk 0 1 0 clk/8 0 1 1 clk/32 1 0 0 clk/64 1 0 1 clk/128 1 1 0 clk/256 1 1 1 clk/1024 Table 51. Compare Output Mode, non-PWM Mode COM21 COM20 Description 0 0 normal port operation, OC2 disconnected. 0 1 toggle OC2 on compare match 1 0 clear OC2 on compare match 1 1 set OC2 on compare match */ TCCR2 = (1 << WGM21) | (1 << COM20) | 1; //CTC, OC2 toggle, clk/1 OCR2 = 92; // 80kHz clock on OC2 } void borg_hw_init() { CTRLDDR = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW); CTRLPORT = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW); DATADDR = 0xff; ADDRDDR |= 0x0f; CTRLPORT = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW); pd1165_write(8, 0x10|7); CTRLPORT &= ~((1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW)); CTRLPORT |= ((1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)); timer0_on(); timer2_on(); DDRD |= 1 << PD7; // OC2 pin to output RDIMPORT |= (1 << BIT_RDIM); RDIMDDR |= (1 << BIT_RDIM); // activate watchdog timer wdt_reset(); wdt_enable(0x00); // 17ms watchdog }